The Corporation of the Municipality of Temagami Sisk Landfill 2023 Annual Report

The Corporation of the Municipality of Temagami Sisk Landfill 2023 Annual Report

> Prepared for: The Corporation of the Municipality of Temagami 7 Lakeshore Drive Temagami, ON P0H 2K0

Prepared by: Story Environmental Inc. 332 Main St. Haileybury, ON P0J 1K0

May 2024

TABLE OF CONTENTS

			PAGE
1	INTF	RODUCTION	1
2	LAN	DFILL SITE	2
	2.1	Site Description and Recent Work	2
	2.2	Onsite Monitoring Wells	6
	2.3	Local Environment	8
		2.3.1 Site Geology	8
		2.3.2 Site Hydrology	8
		2.3.3 Site Hydrogeology	8
3	SITE	OPERATIONS	3
	3.1	Day-to-Day Operations	3
	3.2	Waste Volume and Landfill Capacity 1	4
	3.3	Recommendations Regarding Operations 1	8
4	WAT	ER QUALITY MONITORING 1	9
	4.1	Methods1	9
		4.1.1 Groundwater Sampling Methods 1	9
		4.1.2 Surface Water Sampling Methods	20
	4.2	Quality Assurance and Quality Control 2	0
	4.3	Groundwater Chemistry	3
		4.3.1 Groundwater Chemistry Results	3
		4.3.2 Compliance with Reasonable Use Concept	2
		4.3.3 Recommendations Regarding Groundwater	5
	4.4	Surface Water Chemistry 3	5
		4.4.1 Surface Water Chemistry Results 3	5
		4.4.2 Recommendations Regarding Surface Water	8
	4.5	Combustible Vapours in Monitoring Wells 3	8
5	CON	ICLUSIONS AND RECOMMENDATIONS 3	9
6	REF	ERENCES	0
7	QUA	LIFICATIONS AND LIMITATIONS	1

TABLES

Table 2.2.1	Site Monitoring Well Details	. 7
Table 2.3.1	Groundwater Monitoring Well Elevations (mbg)	. 9
Table 3.2.1	Town Tracking: Sisk Landfill Annual Waste Volumes (non-compacted)	16
Table 3.2.2	Volume Added in 2023	17
Table 3.2.3	Total Landfill Volumes and Remaining Capacity	17

Table 4.2.1	Quality Control - Groundwater Blind Field Replicates April 2023 (from 2023	3
	Briggs Landfill monitoring)	21
Table 4.2.2	Quality Control - Groundwater Blind Field Replicates November 2023	22
Table 4.3.1	Reasonable Use Concept Results April 2023	33
Table 4.3.2	Reasonable Use Concept Results November 2023	34
Table 4.4.1	Surface Water Chemistry Results: SW1	37

FIGURES

3
4
5
11
12
15
24
25
26
27
28
29
30
31

APPENDICES

Appendix A Environmental Compliance Approval

Appendix B Borehole Logs

Appendix C Laboratory Certificates of Analysis

Appendix D Groundwater Chemistry

R:\SEI\048 Temagami\02_Sisk\DI\Annual Report\2023\Final\048_02Sisk2023_Annreport_Final_30May24_JTA.Docx

1 Introduction

The Sisk Landfill ("Site") is operated by The Corporation of the Township of Temagami ("Temagami"). This report summarizes the Site's operations and water quality monitoring conducted in 2023, as required by Section 38. (a) to (h) of the Amendment to Provisional Certificate of Approval Waste Disposal Site No. A7134301, now referred to as an Environmental Compliance Approval ("ECA"). A copy of the ECA is provided in Appendix A.

The Site has been operated since the 1970s. The landfill was established by the Ministry of Natural Resources and Forestry ("MNRF"), but the exact date of establishment is unknown. The Temagami Public Works Department ("Public Works") has operated the landfill since 1998. An existing, but pending transfer, of Site ownership from the MNRF to Temagami has not yet been finalized. Currently, the landfill serves those residents of Temagami who live along Highway 11, south of the Lake Temagami Access Road.

This document represents the Site's twelfth annual report prepared and submitted to the Ministry of Environment, Conservation and Parks ("MECP") by Story Environmental Inc. ("SEI"). Annual Site Reports have been prepared for each year of operation between 2008 to 2011 and 2016 to 2023 by SEI and SEI's predecessor Story Environmental Services ("SES"). From 2012 to 2015 no monitoring or reporting were conducted. Prior to 2008, an annual report had not been prepared and the Site was only monitored in 2001.

2 Landfill Site

2.1 Site Description and Recent Work

The Site is located approximately 33 kilometres ("km") south of Temagami in the geographic Township of Sisk, as shown in Figure 2.1.1. The entrance to the Site is located 720 metres ("m") down a gravel road west of Highway 11 and Marian Lake.

The Site occupies a total area of 12.25 hectares ("ha"). The permitted Fill Area (i.e., the portion of the Site where waste can be disposed) occupies an area of 1.02 ha, as illustrated in Figures 2.1.2 and 2.1.3. The Site has an approved capacity of 40 000 cubic metres ("m³").

SEI conducted the required groundwater and surface water monitoring and a Remote Piloted Aircraft Survey ("RPAS") in 2023.

Document Path: T:\SEI\048 Temagami\02 Sisk\Figures\2024\SEI-048-02-33-2024-002_SiskLandfillSiteLocation_8.5x11L.mxd

Document Path: T:\SEI\048 Temagami\02 Sisk\Figures\2023\SEI-048-02-33-2023-002_SiskSitePlan_8.5x11L.mxd

2.2 Onsite Monitoring Wells

During a Hydrogeological Assessment conducted by Waters Environmental Geosciences Ltd. ("WEG") in 2001 (WEG, 2001), four boreholes were drilled at the Site and monitoring wells, MW1, MW2, MW3, and MW4, were installed. The locations of these monitoring wells are provided in Figures 2.1.2 and 2.1.3. Based on the groundwater data collected in 2001 and the hydraulic conductivity testing, a proposed natural attenuation zone for the Site was established. The monitoring well details are provided in Table 2.2.1 and the borehole logs for the monitoring wells are provided in Appendix B.

Table 2.2.1 Site Monitoring Well Details

Well	Year of	Easting⁵	Northing ⁵	Top of Pipe Elevation ⁵	Pipe Stickup ⁵	Grade Elevation⁵	Well Depth ⁶	Base of Well Elevation ^{5 and 6}	Screen Length ⁶	Borehole Refusal ⁶
	mstanation			masl	mag	masl	mbg	masl	m	mbg
MW1	2001	590551	5180058	295.982	0.81	295.174	3.05	292.12	2.26	291.71
MW2	2001	590536	5180120	296.972	0.60	296.376	4.59	291.79	3.00	291.25
MW3	2001	590639	5180157	298.410	0.93	297.482	4.58	292.90	3.00	292.60
MW4	2001	590645	5180068	296.249	0.91	295.340	3.05	292.29	2.25	291.84

Notes:

1. mag metres above grade

2. masl metres above sea level

3. mbg metres below grade

4. m metres

5. Obtained/calculated from 2016 survey

6. Obtained/calculated from borehole log

Source:

R:\SEI\048 Temagami\02_Sisk\Work\2024\[048_Sisk_Site.MW.llnstall_21Feb24_SED.xlsx]w ell details-from 2016 Survey

2.3 Local Environment

2.3.1 Site Geology

The bedrock in the region consists of felsic intrusive rock of the Proterozoic Grenville Province as well as greywacke metasediments, associated with the Archean Superior Province (ODM, 1967 and ODNA, 1971).

The overburden in the area is generally glaciofluvial in origin and consists of sandy glacial outwash plains, valley terrain deposits, and organic terrain. Bedrock knobs are also found in the region. The local topography is low undulating to rolling relief, with mixed wet and dry drainage and a suspected high-water table (OGS, 1979).

The depth to bedrock for the Site can be inferred from the borehole logs. All four of the boreholes encountered refusal during drilling. MW1 encountered refusal at 3.5 metres below grade ("mbg"), MW2 at 5.02 mbg, MW3 at 5.03 mbg, and MW4 at 3.5 mbg. It should be noted that refusal does not necessarily indicate the presence of bedrock, as refusal may result from contact with a boulder and/or dense granular material. Due to the lack of bedrock outcrops at the Site, refusal at these relatively shallow depths may not be due to bedrock. Therefore, the depth to bedrock at this Site remains unknown.

2.3.2 Site Hydrology

The Site is situated within the drainage basin of Marten River. Surface water adjacent to the Site includes a small unnamed lake and bog area located approximately 100 metres ("m") north of the Active Fill Area (Figure 2.1.2). Additional surface waterbodies include, Pozniak Lake, located approximately 1 kilometre ("km") to the west of the Site and Marian Lake, located approximately 0.5 km to the east (Figure 2.1.1).

The measured water level of the unnamed lake to the north (November 2023: 294.87 metres above sea level ("masl")) indicates that the lake is hydraulically upgradient of the groundwater in the monitoring wells which all have groundwater elevations of less than 294.8 masl.

2.3.3 Site Hydrogeology

The 2001 Hydrogeological Assessment was conducted by WEG to assist with the transfer of the Site ownership from the MNRF to Temagami (WEG, 2001) and to provide background environmental information. A baseline survey was not conducted at the Site prior to its use as a landfill.

Measured groundwater elevations for the years 2001, 2008 to 2011, and 2016 to 2023, expressed as mbg, are provided in Table 2.3.1.

Table 2.3.1 Groundwater Monitoring Well Elevations (mbg)

Date	07 Jun 2001	03 Oct 2008	16 Oct 2008	14 Jul 2009	20 Oct 2009	15 Jun 2010	14 Oct 2010	22 Jun 2011	27 Oct 2011	09 Jun 2016	26 Oct 2016	12 Jul 2017	05 Oct 2017	24 Jul 2018	12 Oct 2018	19 Jun 2019	10 Oct 2019	17 Jun 2020	24 Sep 2020	10 Jun 2021	27 Sep 2021	15 Jun 2022	08 Nov 2022	26 Apr 2023	14 Nov 2023
Monitoring																									
Well																									
MW1	0.51	0.65	0.65	0.64	0.62	0.80	0.72	0.72	0.75	0.71	0.84	0.73	0.88	1.01	0.58	0.61	0.75	0.74	0.75	0.89	0.80	0.71	0.82	0.59	0.77
MW2	1.40	1.47	1.48	1.44	1.43	1.75	1.70	1.72	1.76	1.61	1.85	1.74	1.92	2.07	1.51	1.59	1.74	1.70	1.72	1.82	1.76	1.80	1.85	1.59	1.80
MW3	2.82	3.06	3.06	3.05	3.02	3.21	3.15	3.14	3.21	3.13	3.30	3.13	3.36	3.51	2.96	3.02	3.19	3.16	3.16	3.29	3.23	2.93	3.07	2.70	2.94
MW4	0.70	0.85	0.84	0.83	0.80	0.98	0.91	0.91	0.95	0.88	1.03	0.94	1.09	1.24	0.75	0.81	0.92	0.92	0.92	1.04	0.97	0.85	0.90	0.69	0.84

Notes:

1. Elevation units are in meteres below grade.

R:\SEI\048 Temagami\02_Sisk\Work\2024\[Sisk_GW_Levels_Crosstab_09Apr24_JTA.xlsx]Sisk_GW_Levels_Crosstab

Water table contours for April and November 2023 are provided in Figures 2.3.1 and 2.3.2, respectively. These water table contours were prepared using a kriging algorithm in Golden Software's Surfer®.

In previous years, the inferred Site groundwater flow direction was towards Marian Lake and Marian Creek (located approximately 1.5 km southeast). (SEI, 2023) In 2023, monitoring well elevations were updated based on newer survey data. The groundwater contours from April and November 2023 suggest a southerly groundwater flow (Figures 2.3.1 and 2.3.2). This is slightly different from previous years. Data collection in future years will confirm whether this pattern persists. The unnamed lake and bog, situated to the north of the Site, with water at a higher elevation than the Site groundwater, likely influences the groundwater flow in the southerly or southeasterly direction. The water elevation of the nearby unnamed lake and bog is only measured once per year, during the fall monitoring event. The measured elevation of the unnamed lake was 294.87 masl in November 2023.

In 2023, the average horizontal hydraulic gradient was 0.0029 metres per metre ("m/m"). WEG (2001) recommended using a mean hydraulic conductivity of 3.2x10⁻³ cm/s for the Site. Using this data and an estimated effective porosity of 0.3, in 2023, the average linear flow velocity across the Site was approximately 9.8 m/yr.

Document Path: T:\SEI\048 Temagami\02 Sisk\Figures\2023\SEI-048-02-33-2023-003_AprilGWElevations_8.5x11L.mxd

Document Path: T:\SE\\048 Temagami\02 Sisk\Figures\2023\SEI-048-02-33-2023-004_NovemberGWElevations_8.5x11L.mxd

3 Site Operations

3.1 Day-to-Day Operations

Temagami's Waste Management Program includes diversion of waste from landfill disposal. Storage areas for scrap metal, white goods, and used tires are set up onsite and these materials are transferred offsite, as required. In 2015, Temagami implemented a recycling program, which provides onsite recycling facilities.

The hours of Site operation are:

- Monday: Closed
- Tuesday: Closed
- Wednesday: 1:00 pm to 4:30 pm
- Thursday: 1:00 pm to 4:30 pm
- Friday: Closed
- Saturday: 1:00 pm to 4:30 pm
- Sundays: 3:00 pm to 6:30 pm |summer hours|; 1:00 pm to 4:30 pm |winter hours|

The Site is gated to limit afterhours dumping. SEI conducted a gap analysis of best management practices and legislative requirements for the Temagami landfills in 2007. Inconsistent record keeping was one of the identified gaps. Since October of 2007, Temagami has maintained daily records at each of their landfills through completion of a daily log sheet. The data recorded includes:

- the date of waste receipt;
- the hours of operation;
- the landfill attendant;
- the type of vehicle that delivered the waste;
- an estimated volume of the total waste received in cubic metres and its category (clean wood/brush, commercial waste, construction waste, domestic, metal, refrigerators, and tires);
- any complaints received and the responding actions to address them; and
- any other comments relevant to describe the daily landfill operations.

The main operating challenge encountered in 2023 was a significant volume of windblown debris. The windblown debris resulted from the size and shape of the working face and hauling of the waste out of the Active Fill Area by bears. These items will be discussed in the Recommendations Regarding Operations section of this report.

3.2 Waste Volume and Landfill Capacity

The landfill is a trench and fill operation and uses one Active Fill Area at a time. Public Works has tracked the amount of waste accepted at the Site since October 2007. There was not any recording of the volume of waste deposited in the landfill prior to this time. Data available to estimate deposited waste volumes prior to 2008 consist of Site topographic surveys completed by Sutcliffe Rody Quesnel Inc. ("SRQ") in 2001 and 2008. SEI had SRQ conduct cut and fill volume calculations using the survey data to determine the volume of waste deposited between 2001 and 2008. In 2009, SEI conducted test pitting to determine a topographic baseline of the landfill and calculate a reliable residual capacity for the landfill.

Landfill volumes from 2009 to 2018 were based on historical waste deposition surveys, landfill attendant tracking, and estimated annual volumes based on historical averages.

Starting in 2019, the volume deposited in the Fill Area was calculated through the application of two methods:

- 1) Temagami's daily record keeping of the volumes deposited at the Site; and
- 2) using RPAS data to generate digital elevation models of the Fill Area once per year and calculating the volumetric change of this surface over the year.

According to 2023 data collected by Temagami, 1835 m³ of non-compacted waste were deposited in the Fill Area (Table 3.2.1). This equates to 1060 m³ of compacted waste and cover material added to the Site in 2023 (Table 3.2.2). According to the RPAS surveys, there were 526 m³ of compacted waste and cover material added to the Site in 2023. The areas surveyed by the RPAS, including contour lines, are illustrated on Figure 3.2.1.

The RPAS data are considered more accurate for estimating landfill volumes than the Public Works waste volume records. The volume of domestic waste derived from the RPAS data was 100 percent ("%") lower than the volume recorded by Public Works. SEI will continue to use the RPAS data to determine waste deposition in the landfill. Temagami indicated that some waste compaction of the existing waste occurred in 2023. This is most likely responsible for the discrepancy between the Temagami recorded waste deposition volume and the estimated volumes obtained through the RPAS.

Document Path: T:\SEI\048 Temagami\02 Sisk\Figures\2023\SEI-048-02-33-2023-005_TopographicSurvey_8.5x11L.mxd

Table 3.2.1 Town Tracking: Sisk Landfill Annual Waste Volumes (non-compacted)

	Waste Stream Totals per Year (Non-compacted) Diverted From Fill Area Deposited in Fill Area Tires Clean Wood/Brush Refrigerators Metal Domestic Waste Construction Waste Commercial Waste Total Waste 4 99 17 89 1085 24 9 1118 0 48 1 38 361 0 0 361 25 231 37 153 1408 22 79 1509 9 25 30 43 311 19 76 406 0 29 0 50 314 18 42 374												
		Diverte	d From Fill Area			Deposited ir	n Fill Area						
Year	Tires	Clean Wood/Brush	Refrigerators	Metal	Domestic Waste	Construction Waste	Commercial Waste	Total Waste					
2008	4	99	17	89	1085	24	9	1118					
2009	0	48	1	38	361	0	0	361					
2010	25	231	37	153	1408	22	79	1509					
2011	9	25	30	43	311	19	76	406					
2012	0	29	0	50	314	18	42	374					
2013	0	183	0	156	1048	0	108	1156					
2014	0	186	0	127	913	22	110	1045					
2015	0	172	0	158	1080	0	111	1191					
2016	0	249	0	162	1136	52	51	1239					
2017	0	88	0	48	295	9	8	312					
2018	0	366	0	193	1269	22	88	1379					
2019	0	185	16	134	1052	13	64	1129					
2020	0	334	9	189	1715	26	154	1895					
2021	0	187	3	187	1037	24	15	1076					
2022	0	174	3	65	4391	52	39	4482					
2023	0	20	0	15	1784	50	0	1835					

Notes:

1. All units are in cubic metres

2. All loads are estimated in cubic metres by the landfill clerk

Source:

R:\SEI\048 Temagami\02_Sisk\Work\2024\[048_Sisk Landfill Volume Tracker 2023_20Feb24_JTA.xlsx]2023 data

Table 3.2.2 Volume Added in 2023

	Town Records (m ³)	SEI RPAS (m³)		
Waste (non-compacted)	1835	-		
Waste (compacted)	1009 ¹	500 ²		
Cover (estimated to be ~5%)	50	26		
Total Volume (Waste + Cover)	1060	526 ³		

Notes:

1) Calculated assuming compacted waste is 55% of the volume of non-compacted waste

2) Calculated from Total Volume from RPAS data

3) From SEI RPAS data

Source:

R:\SEI\048 Temagami\02_Sisk\Work\2024\[048_Sisk_RemainingVolume2023_20Feb24_JTA.xls]2023

Table 3.2.3 Total Landfill Volumes and Remaining Capacity

	Volume (m ³)
Total Volume of Compacted Waste + Cover Material in Landfill to End of 2022	19 434
Volume of Compacted Waste + Cover Added in 2022 (RPAS data)	526
Total Volume of Compacted Waste + Cover Material in Landfill to End of 2023	19 960
Capacity of Landfill	40 000
Remaining Capacity	20 040

Source:

R:\SEI\048 Temagami\02_Sisk\Work\2024\[048_Sisk_RemainingVolume2023_20Feb24_JTA.xls]2023

Approximately 19 960 m³ of material (compacted waste and cover material) are currently present within the landfill (Table 3.2.3). Since the approved capacity of the landfill is 40 000 m³, the remaining capacity for waste and cover material is estimated to be 20 040 m³ (Table 3.2.3).

The life expectancy for the landfill was calculated using the average volume deposited in the Fill Area (based on the RPAS survey results) over the previous five years $(2019 = 802 \text{ m}^3, 2020 = 642 \text{ m}^3, 2021 = 348 \text{ m}^3, 2022 = 419 \text{ m}^3, 2023_= 526 \text{ m}^3)$. Using this data, the average annual waste deposition rate was calculated to be approximately 547 m³. Using this waste deposition rate, and an estimated remaining capacity of 20 040 m³(Table 3.2.3), the landfill will reach its licensed capacity in approximately 37 years. This life expectancy calculation should be assessed annually through collection of updated survey data and with any changes to the geometry of the permitted Fill Area.

3.3 Recommendations Regarding Operations

Based upon the review of the 2023 operations, the following are the recommendations regarding landfill operations.

Waste in the form of plastic bags and other wind-blown debris is routinely observed outside of the Fill Area. This waste should be gathered and deposited within the Fill Area on a regular basis. As well, portable fencing and a smaller working area would help prevent windblown debris.

A portion of the debris issue is due to bears carrying waste away from the Site, creating a secondary problem of windblown debris. In the summer of 2012, Temagami purchased electric bear fencing to address this issue, however it proved to be ineffective in diverting bears from the Site, as the bears destroyed the fence shortly after installation.

The permitted Fill Area is not clearly defined and, as illustrated in Figures 2.1.2 and 2.1.3, consists of a polygon shape. To increase operational efficiency, the footprint configuration should be adjusted to a rectangle or square with clearly marked limits. Temagami plans, with the approval of the MECP, to update the shape of the Fill Area so that is more manageable from an operational perspective.

The Site should be surveyed on an annual basis. Public Works should also continue to consolidate the waste volume data on a regular basis (e.g., quarterly throughout the year) to ensure that waste volume data are being routinely and accurately collected by the landfill attendant. In 2024, SEI requests that Temagami keeps records of when they perform compaction activities at their landfills. Compaction will reduce the volume of existing and new waste, therefore this information is important to understand how much compaction is conducted.

4 Water Quality Monitoring

4.1 Methods

4.1.1 Groundwater Sampling Methods

Groundwater monitoring and sampling was conducted at the Site in 2023. The monitoring well installation details are provided in Table 2.2.1, the borehole logs are provided in Appendix B, and the location of the monitoring wells are provided on Figure 2.1.2.

Combustible vapour concentrations were measured in the monitoring wells with an RKI Eagle Combustible Gas Monitor. This was done by inserting the probe into a monitoring well and keeping the cap in place to the extent possible. The reading on the RKI was allowed to stabilize and then recorded.

Prior to sampling, the static water level in each monitoring well was measured using a Heron[®] oil/water Interface Probe and recorded. The probe was washed with phosphate free detergent and rinsed with deionized water between sampling locations. The static water levels were then used to calculate the volume of water required to purge the well of five casing volumes, using the following equation:

$$V_P = 5 \times \left[\frac{\pi}{4} \times d_w^2 (h_b - h_s) \times \left(\frac{1000L}{m^3} \right) \right]$$

where: V_P is the volume of groundwater to be purged (Litres);

 h_b is the depth to the well bottom (m);

 h_s is the depth to the water table (m); and

d_w is the well casing diameter (m).

The groundwater purging and sampling were completed using dedicated Waterra tubing and foot valves previously installed in the wells. Sampling staff wore a new pair of nitrile gloves during the sampling process at each well.

The groundwater pH, electrical conductivity, temperature, and dissolved oxygen were measured using a YSI Professional Plus multi-parameter meter ("YSI") and the results were recorded on the SEI field sheets. These parameters were measured at least three times during the process of purging each of the wells of up to five casing volumes (approximately 12 to 50 litres ("L")). The purged water was pumped into a 15 L bucket containing the YSI and the bucket was emptied after each third of the total required purged volume was collected (or 15 L, whichever was smaller, depending on the well). These measurements are monitored to ensure that the groundwater was approaching steady-state values for the field parameters prior to sampling.

After purging each well and completing the field measurements, samples were collected in the appropriately labelled laboratory-supplied sampling bottles by pumping groundwater directly from the dedicated Waterra tubing into the sample bottles. A 0.45-micron Waterra FHT-Groundwater filter was placed on the end of the tubing to fill the dissolved metals sample bottle. All samples were placed in ice chilled coolers and shipped by overnight courier to Bureau Veritas Laboratories ("BV Labs") in Mississauga, Ontario.

4.1.2 Surface Water Sampling Methods

Surface water samples were collected from SW1 site in 2023 (April and November). The location of the SW1 site is provided on Figure 2.1.2. Surface water samples were collected as single grab samples using a 4 L beaker, taking precautions to ensure that sediments were not disturbed. The pH, dissolved oxygen, electrical conductivity, oxidation reduction potential, and temperature were measured using the YSI and recorded.

The water surface elevation of the unnamed lake was measured using the RPAS drone imagery from the November 2023 sampling event.

4.2 Quality Assurance and Quality Control

All laboratory analytical data are supported by a Certificate of Analysis which outlines the analyses performed, the methodology utilized, the instruments used, and provides a Certificate of Quality Control and a Certificate of Analysis. The Certificate of Quality Control specifies the obtained Quality Assurance and Quality Control ("QA/QC") data, including results of process blanks and matrix spikes, along with the performance criteria. The laboratory Certificates of Analysis for all groundwater and surface water samples collected through the 2023 monitoring events are provided in Appendix C.

As part of the QA/QC program, SEI collected a set of blind field replicate samples from one monitoring well located at Temagami's Briggs Landfill in April 2023 and Temagami's Sisk Landfill in November 2023. Both the Briggs and Sisk Landfills are monitored at the same time, so one QA/QC sample is collected as part of the overall monitoring program. The April and November blind field replicates samples were labelled as "Y1" for submission to the laboratory.

The blind field replicate sample results are provided in Tables 4.2.1 and 4.2.2. The Relative Percent Difference ("RPD") is used to compare the two laboratory results. The RPD is defined as the absolute value of the difference between the two results, divided by the average of the two results, converted to a percentage. To conduct these RPD calculations, both results must exceed the laboratory's Reportable Detection Limit ("RDL") by at least five times (5x). There were no RPD exceedances greater than 20% in the Briggs Landfill April sampling event (Table 4.2.1) and the Sisk Landfill November sampling event (Table 4.2.2) in 2023.

Parameters	Units	MW1	RDL	Y1	RDL	Diff.	RPD (%)
Total Alkalinity (as CaCO3)	mg/L	180	1	200	1	20	11
Total Ammonia (as N)	mg/L	<0.050	0.05	<0.050	0.05	0	nc
Dissolved Arsenic	mg/L	< 0.0010	0.001	< 0.0010	0.001	0	nc
Dissolved Barium	mg/L	0.01	0.002	0.011	0.002	0.001	nc
Biological Oxygen Demand	mg/L	< 2	2	<2	2	0	nc
Dissolved Boron	mg/L	0.081	0.01	0.076	0.01	0.005	6
Dissolved Cadmium	mg/L	< 0.000090	0.00009	< 0.000090	0.00009	0	nc
Dissolved Calcium	mg/L	59	0.2	58	0.2	1	2
Chloride	mg/L	<1.0	1	<1.0	1	0	nc
Dissolved Chromium	mg/L	< 0.0050	0.005	< 0.0050	0.005	0	nc
Dissolved Copper	mg/L	0.0034	0.0009	0.0037	0.0009	0.0003	nc
Dissolved Organic Carbon	mg/L	1.8	0.4	1.8	0.4	0	nc
Hardness (as CaCO3)	mg/L	190	1	190	1	0	0
Dissolved Iron	mg/L	< 0.1	0.1	< 0.1	0.1	0	nc
Dissolved Lead	mg/L	< 0.00050	0.0005	< 0.00050	0.0005	0	nc
Dissolved Magnesium	mg/L	11	0.05	11	0.05	0	0
Dissolved Manganese	mg/L	0.29	0.002	0.28	0.002	0.01	4
Nitrate (as N)	mg/L	< 0.1	0.1	<0.1	0.1	0	nc
Nitrate + Nitrite (as N)	mg/L	< 0.1	0.1	<0.1	0.1	0	nc
Nitrite (as N)	mg/L	<0.010	0.01	<0.01	0.01	0	nc
Total Phosphorus	mg/L	0.18	0.004	0.18	0.004	0	0
Dissolved Potassium	mg/L	5.5	0.2	5.5	0.2	0	0
Dissolved Sodium	mg/L	5.1	0.1	5.2	0.1	0.1	2
Sulphate	mg/L	7	1	7.7	1	0.7	10
Total Dissolved Solids	mg/L	155	10	165	10	10	6
Total Kjeldahl Nitrogen	mg/L	0.17	0.1	0.2	0.1	0.03	nc
Dissolved Zinc	mg/L	< 0.0050	0.005	< 0.0050	0.005	0	nc

Table 4.2.1Quality Control - Groundwater Blind Field Replicates April 2023 (from 2023Briggs Landfill monitoring)

Notes:

Y1 = label of blind field replicates submitted to laboratory

RDL = Reportable Detection Limit

nc = not calculated. RPD is only calculated when the concentration results for both the sample and its replicate are greater than the Practical Quantitation Limit, defined as five times (5x) the RDL.

Diff. = Absolute difference betw een sample and its replicate. Half the RDL is used when the result is <RDL.

RPD = Relative Percent Difference betw een sample and its replicate, calculated as: Diff./((sample+replicate)/2)*100.

Shaded cells highlight results with RPD values in excess of 20% for inorganics or 30% for organics.

Source:

R:\SEI\048 Temagami\01_Briggs\Work\2024\[048_Briggs_RPD_10Jan24_EK.xlsx]26 Apr 23

Parameters	Units	MW3	RDL	Y1	RDL	Diff.	RPD (%)
Total Alkalinity (as CaCO3)	mg/L	130	1	150	1	20	14
Total Ammonia (as N)	mg/L	< 0.050	0.05	< 0.050	0.05	0	nc
Dissolved Arsenic	mg/L	< 0.0010	0.001	< 0.0010	0.001	0	nc
Dissolved Barium	mg/L	0.013	0.002	0.013	0.002	0	0
Biological Oxygen Demand	mg/L	< 2	2	< 2	2	0	nc
Dissolved Boron	mg/L	< 0.01	0.01	< 0.01	0.01	0	nc
Dissolved Cadmium	mg/L	< 0.000090	0.00009	< 0.000090	0.00009	0	nc
Dissolved Calcium	mg/L	46	0.2	46	0.2	0	0
Chloride	mg/L	< 1.0	1	< 1.0	1	0	nc
Dissolved Chromium	mg/L	< 0.0050	0.005	< 0.0050	0.005	0	nc
Dissolved Copper	mg/L	0.0017	0.0009	0.0025	0.0009	0.0008	nc
Dissolved Organic Carbon	mg/L	3.9	0.4	4.1	0.4	0.2	5
Hardness (as CaCO3)	mg/L	150	1	150	1	0	0
Dissolved Iron	mg/L	0.35	0.1	0.37	0.1	0.02	nc
Dissolved Lead	mg/L	< 0.00050	0.0005	< 0.00050	0.0005	0	nc
Dissolved Magnesium	mg/L	7.7	0.05	8	0.05	0.3	4
Dissolved Manganese	mg/L	0.014	0.002	0.014	0.002	0	0
Nitrate (as N)	mg/L	< 0.10	0.1	< 0.10	0.1	0	nc
Nitrate + Nitrite (as N)	mg/L	< 0.10	0.1	< 0.10	0.1	0	nc
Nitrite (as N)	mg/L	< 0.010	0.01	< 0.010	0.01	0	nc
Total Phosphorus	mg/L	0.025	0.004	0.023	0.004	0.002	8
Dissolved Potassium	mg/L	0.63	0.2	0.65	0.2	0.02	nc
Dissolved Sodium	mg/L	1	0.1	1.1	0.1	0.1	10
Sulphate	mg/L	2.4	1	2.3	1	0.1	nc
Total Dissolved Solids	mg/L	140	10	145	10	5	4
Total Kjeldahl Nitrogen	mg/L	0.14	0.1	0.1	0.1	0.04	nc
Dissolved Zinc	mg/L	< 0.0050	0.005	< 0.0050	0.005	0	nc

Table 4.2.2	Quality Control - Groundwater Blind Field Replicates November 2023
-------------	--

Notes:

Y1 = label of blind field replicates submitted to laboratory

RDL = Reportable Detection Limit

than the Practical Quantitation Limit, defined as five times (5x) the RDL.

Diff. = Absolute difference betw een sample and its replicate. Half the RDL is used when the result is <RDL.

RPD = Relative Percent Difference betw een sample and its replicate, calculated as: Diff./((sample+replicate)/2)*100.

Shaded cells highlight results with RPD values in excess of 20% for inorganics or 30% for organics.

Source:

R:\SEI\048 Temagami\02_Sisk\Work\2024\[048_Sisk_RPD_10Jan24_EK.xlsx]14 Nov 2023

4.3 Groundwater Chemistry

4.3.1 Groundwater Chemistry Results

The Laboratory Certificates of Analysis for the 2023 monitoring are included in Appendix C. The analytical data from the 2023 groundwater monitoring events and the historical analytical data, are provided in Tables D.1 to Table D.4, Appendix D.

To determine the landfill leachate impacts to local groundwater quality, based on a review of historical data, eight indicator parameters were selected for the Site: alkalinity, dissolved boron, dissolved chloride, dissolved organic carbon, dissolved manganese, dissolved sodium, dissolved sulphate, and total dissolved solids. Parameter concentration versus time graphs for these indicator parameters are provided in Figure 4.3.1 to Figure 4.3.8.

At MW1, the monitoring well southwest of the fill area, the concentrations in the groundwater increased between 2012 and 2017 but now generally exhibit seasonal fluctuations but no significant decreasing or increasing trends. The exceptions to this pattern are with dissolved chloride, dissolved sodium, and dissolved sulphate which are exhibiting declining trends in recent years.

MW2, on the north-northeast side of the Fill Area, shows stable but seasonally fluctuating concentrations for all indicator parameters, as illustrated in Figures 4.3.1 to 4.3.8.

MW3, on the northern boundary of the Fill Area, shows generally low but seasonally fluctuating concentration trends for the indicator parameters, as illustrated in Figures 4.3.1 to 4.3.8.

MW4, the well to the southeast side of the Fill Area and downgradient of the Active Fill Area, shows higher concentrations than the other wells for several of the indicator parameters. Like MW1, MW4 showed increases in groundwater concentration for most indicator parameters from 2012 to 2017 with most concentrations since 2017 exhibiting seasonal fluctuations but no significant increasing or decreasing trends. The exception to this pattern is dissolved organic carbon which is showing a trend of reducing concentrations and dissolved sodium which appears to be increasing.

Figure 4.3.1 Alkalinity Time Series in Monitoring Well

4.3.2 Compliance with Reasonable Use Concept

The MECP Guideline B-7 (MOE, 1986), for the Reasonable Use Concept ("RUC") defines boundary criteria for the quality of groundwater leaving a site. A background (non-impacted) well is used to apply the RUC to a site. SEI has used the concentrations at MW3 to represent the background conditions for this Site. It should be emphasized that the RUC is only strictly applicable at the Site's property line. Exceedances of the RUC at these groundwater monitoring locations near the Fill Area are expected and do not indicate non-compliance. Since MW1, MW2, and MW4 are within the Site near the Fill Area, the RUC is not technically applicable to these wells. The RUC was only used here to assess the degree of impact to groundwater resulting from close proximity to the Fill Area. Once the full extent of the leachate plume has been established through the installation of additional monitoring wells further away from the Active Fill Area, this evaluation should be reconducted using more appropriate monitoring wells.

The results of the RUC analysis for the 2023 spring and fall sampling events are provided in Tables 4.3.1 and 4.3.2, respectively.

As expected, concentrations of one health-related and several non-health related parameters exceeded the RUC at these monitoring locations close to the Fill Area including: dissolved arsenic, alkalinity, DOC, hardness, organic nitrogen, TDS, dissolved iron, and dissolved manganese.

Table 4.3.1 Reasonable U	e Concept Resi	ults April 2023
--------------------------	----------------	-----------------

Parameters	Units	RUC Factor		Background Well	Allowable	Monitoring Wells			
			ODWO	MW3 ²	Under NOC	MW1	MW2	MW4	
Health-Related Parameters									
Arsenic (As)-Dissolved	mg/L	0.25	0.01	< 0.0010	0.003	<u>0.0078</u>	< 0.0010	0.0019	
Barium (Ba)-Dissolved	mg/L	0.25	1	0.0077	0.26	0.16	0.037	0.099	
Boron (B)-Dissolved	mg/L	0.25	5	< 0.01	1.3	0.73	0.22	0.21	
Cadmium (Cd)-Dissolved	mg/L	0.25	0.005	< 0.000090	0.0013	< 0.000090	< 0.000090	< 0.000090	
Chromium (Cr)-Dissolved	mg/L	0.25	0.05	< 0.0050	0.013	< 0.0050	< 0.0050	< 0.0050	
Lead (Pb)-Dissolved	mg/L	0.25	0.01	< 0.00050	0.0025	< 0.00050	< 0.00050	0.00092	
Nitrate (as N)	mg/L	0.25	10.0	< 0.10	2.5	< 0.10	< 0.10	0.59	
Nitrite (as N)	mg/L	0.25	1.0	< 0.010	0.26	< 0.010	< 0.010	< 0.010	
Non-Health Related Parameters									
Alkalinity (Total as CaCO3) ⁵	mg/L	0.5	500	89	295	<u>590</u>	120	230	
Dissolved Chloride (Cl)	mg/L	0.5	250	< 1.0	125	10	< 1.0	44	
Dissolved Organic Carbon	mg/L	0.5	5	3.2	4.1	<u>7.5</u>	<u>12</u>	<u>11</u>	
Dissolved Sulphate (SO4)	mg/L	0.5	500	2.5	251	4.6	3.2	23	
Hardness (CaCO3) ⁶	mg/L	0.5	100	86	93	<u>530</u>	<u>120</u>	<u>400</u>	
Organic Nitrogen (Calculated)	mg/L	0.5	0.15	0.11	0.13	<u>1</u>	<u>0.34</u>	<u>0.54</u>	
Total Dissolved Solids (TDS)	mg/L	0.5	500	85	293	<u>355</u>	120	<u>600</u>	
Copper (Cu)-Dissolved	mg/L	0.5	1	0.0016	0.50	0.0023	0.0036	0.013	
Iron (Fe)-Dissolved	mg/L	0.5	0.3	0.16	0.23	<u>9.7</u>	<u>2.4</u>	<u>2.7</u>	
Manganese (Mn)-Dissolved	mg/L	0.5	0.05	0.0055	0.028	<u>0.67</u>	<u>0.13</u>	<u>2.5</u>	
Sodium (na)-Dissolved	mg/L	0.5	200	0.71	100	29	3.1	55	
Zinc (Zn)-Dissolved	mg/L	0.5	5	< 0.0050	2.5	< 0.0050	0.19	< 0.0050	

Notes:

1. ODWQS = Ontario Drinking Water Quality Standard; ODWO= Ontario Drinking Water Quality Objectives, RUC = Reasonable Use Concept; "nc" = not calculated. Organic nitrogen not

calculated if TKN and Total Ammonia are non detect or TKN<Total Ammonia

2. Background well used for Reasonable Use Concept ("RUC") calculations = MW3.

3. For health related parameters the allow able concentration = background + 25% of difference betw een ODWQS and background, or = background concentration if background exceeds ODWQS.

4. For non health related parameters the allow able concentration = background + 50% of difference betw een ODWQS and background, or = background concentration if background exceeds ODWQS.

(In calculating the allow able concentrations, all background concentrations below the Reportable Detection Limit (RDL) were treated as being equal to one-half of the RDL.)

5. The ODWQS for alkalinity ranges from 30-500 mg/L, but only the upper limit is evaluated here.

6. The ODWQS for hardness ranges from 80-100 mg/L, but only the upper limit is evaluated here.

7. All parameter concentrations greater than the allow able concentration under the RUC are **bold** and <u>underlined</u>.

Source:

R:\SE\048 Temagami\02_Sisk\Work\2024\[048_Sisk_RUC_10Jan24_EK.xlsx]RUC April

Table 4.3.2 Reasonable Use Concept Results November 2023

Parameters	RUC Factor	ODWQS/	Background Well	Allowable	Monitoring Wells			
		ODWO	MW3 ²	Under RUC	MW1	MW2	MW4	
Health-Related Parameters								
Arsenic (As)-Dissolved	0.25	0.01	< 0.0010	0.003	<u>0.015</u>	< 0.0010	0.0014	
Barium (Ba)-Dissolved	0.25	1	0.013	0.26	0.23	0.045	0.11	
Boron (B)-Dissolved	0.25	5	< 0.01	1.3	1.1	0.38	0.29	
Cadmium (Cd)-Dissolved	0.25	0.005	< 0.000090	0.0013	< 0.000090	< 0.000090	< 0.000090	
Chromium (Cr)-Dissolved	0.25	0.05	< 0.0050	0.013	< 0.0050	< 0.0050	< 0.0050	
Lead (Pb)-Dissolved	0.25	0.01	< 0.00050	0.0025	< 0.00050	< 0.00050	< 0.00050	
Nitrate (as N)	0.25	10.0	< 0.10	2.5	< 0.10	< 0.10	0.56	
Nitrite (as N)	0.25	1.0	< 0.010	0.26	< 0.010	< 0.010	< 0.010	
Non-Health Related Parameters								
Alkalinity (Total as CaCO3) ⁵	0.5	500	130	315	<u>530</u>	140	<u>440</u>	
Dissolved Chloride (Cl)	0.5	250	< 1.0	125	21	< 1.0	92	
Dissolved Organic Carbon	0.5	5	3.9	4.5	<u>9.9</u>	<u>14</u>	<u>12</u>	
Dissolved Sulphate (SO4)	0.5	500	2.4	251	11	1.7	42	
Hardness (CaCO3) ⁶	0.5	100	150	150	<u>570</u>	140	<u>460</u>	
Organic Nitrogen (Calculated)	0.5	0.15	0.12	0.14	<u>0.3</u>	<u>0.2</u>	<u>0.75</u>	
Total Dissolved Solids (TDS)	0.5	500	140	320	<u>700</u>	165	<u>715</u>	
Copper (Cu)-Dissolved	0.5	1	0.0017	0.50	0.0021	< 0.00090	0.012	
Iron (Fe)-Dissolved	0.5	0.3	0.35	0.35	<u>21</u>	<u>5.4</u>	<u>0.36</u>	
Manganese (Mn)-Dissolved	0.5	0.05	0.014	0.032	<u>0.97</u>	<u>0.22</u>	<u>1.1</u>	
Sodium (na)-Dissolved	0.5	200	1	101	39	2.3	61	
Zinc (Zn)-Dissolved	0.5	5	< 0.0050	2.5	< 0.0050	< 0.0050	< 0.0050	

Notes:

1. ODWQS = Ontario Drinking Water Quality Standard; ODWO= Ontario Drinking Water Quality Objectives, RUC = Reasonable Use Concept; "nc" = not calculated. Organic nitrogen not calculated if TKN and Total Ammonia are non detect or TKN<Total Ammonia

2. Background well used for Reasonable Use Concept ("RUC") calculations = MW3.

3. For health related parameters the allow able concentration = background + 25% of difference betw een ODWQS and background, or = background concentration if background exceeds ODWQS.

4. For non health related parameters the allow able concentration = background + 50% of difference betw een ODWQS and background, or = background concentration if background exceeds ODWQS. (In calculating the allow able concentrations, all background concentrations below the Reportable Detection Limit (RDL) were treated as being equal to one-half of the RDL.)

5. The ODWQS for alkalinity ranges from 30-500 mg/L, but only the upper limit is evaluated here.

6. The ODWQS for hardness ranges from 80-100 mg/L, but only the upper limit is evaluated here.

7. All parameter concentrations greater than the allow able concentration under the RUC are **bold** and <u>underlined</u>.

Source:

R:\SEI\048 Temagami\02_Sisk\Work\2024\[048_Sisk_RUC_10Jan24_EK.xlsx]RUC Nov

4.3.3 Recommendations Regarding Groundwater

Monitoring of the groundwater quality at the Site should continue twice per year as required by the ECA. In 2016, after analyzing an adequate groundwater dataset, SEI eliminated mercury, fluoride, and phenols from the analyte list for this Site. From 2008 to 2010, mercury and fluoride were not detected in any of the Site groundwater samples, with a total of 20 mercury and 20 fluoride analyses completed. Phenols were only detected three times at MW2, at low concentrations. Furthermore, phenols do not appear to be an indicator parameter for landfill leachate impacts at this Site since monitoring wells MW1 and MW4 are both more impacted by landfill leachate than MW2 but neither MW1 nor MW4 have recorded detectable concentrations of phenols. Overall, the presence or absence of phenols in a particular monitoring well does not improve our understanding of the fate and transport of the indicator parameters at this Site. No additional parameters are recommended for removal from the monitoring program at this time.

The total extent of leachate impact at the Site is, presently, unknown as there are no monitoring wells located sufficiently downgradient of the Fill Area. The installation of additional downgradient monitoring wells will assist in delineating the extent of the leachate plume. It is recommended that two to three additional monitoring wells be installed further downgradient of the Fill Area over the coming years. These wells will provide a better understanding of the extent of the leachate plume downgradient from the landfill.

Reports should continue to be submitted to the MECP annually.

4.4 Surface Water Chemistry

4.4.1 Surface Water Chemistry Results

Surface water samples were collected from the unnamed lake at SW1 (illustrated in Figure 2.1.2) in 2023 (April and November).

In general, SW1 is characterized by water quality typical of a northern Ontario bog, with most water quality parameters within Provincial Water Quality Objectives ("PWQOs") except for pH. Historically, and in 2023, the surface water at SW1 has typically been acidic with pH less than 6.5 (Table 4.4.1). In addition to pH, total copper and total phosphorus concentrations were greater than their respective PWQOs in the water sample collected in April 2023.

The unnamed lake is expected to be a source of recharge for the local groundwater near the Site. This is supported by two pieces of evidence: there is no mapped surface water outflow from the unnamed lake and the measured water level of the lake (November 2023: 294.87 masl) indicates that the lake is hydraulically up-gradient of the Site's groundwater. Therefore, some indicator parameters within the monitoring wells could be elevated or reduced due to the SW1 surface

water quality. This unnamed lake might also be playing a role in the seasonal fluctuations of the groundwater quality in the monitoring wells.

Table 4.4.1 Surface Water Chemistry Results: SW1

	Sample ID SW1																								
		Date	05 Jul 2001	14 Jul 2009	20 Oct 2009	15 Jun 2010	14 Oct 2010	22 Jun 2011	27 Oct 2011	09 Jun 2016	26 Oct 2016	12 Jul 2017	05 Oct 2017	24 Jul 2018	12 Oct 2018	19 Jun 2019	10 Oct 2019	17 Jun 2020	24 Sep 2020	10 Jun 2021	27 Sep 2021	15 Jun 2022	08 Nov 2022	26 Apr 2023	14 Nov 2023
Parameter	Units	PWQO ¹																	-						
Conductivity Field	µS/cm	-	-	13	14	15	15	12	19	15	17	14	18	15	15	19	16	17	17	22	20	19	16	22	20
Dissolved Oxygen Field ²	mg/L	5/6/7/8	-	7.4	7.3	8.3	7.7	8.2	9.2	7.2	7.6	4.1	6.2	4.4	6.5	5.8	4.4	6.1	6.5	5.0	6.7	1.8	8.6	7.6	7.4
Dissolved Oxygen Field %	%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	63.5	40.7	-	66.8	53.5	65.5	20	73	51.7	57.1
ORP Field	mV	-	-	-	-	-	-	-	-	-	238	214	-	216	237	-	68	-	105	254	140	213	265	152	183
pH Field	s.u.	6.5-8.5	-	5.3	4.9	4.7	4.9	5.1	6.5	5.7	5.2	6.3	8.1	4.6	4.5	5	5	4.6	5.1	4.8	6	5.6	4.6	5.3	5.5
Temperature Field	°C	-	-	22	8.6	22	11	20	7.8	15	7.5	21	15	24	10	21	12	20	16	13	15	22	8.3	0	4.3
Alkalinity, Total (as CaCO3)	mg/L	-	< 1	< 1	< 1	< 1	-	< 1	< 1	< 1	1	1	< 1	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	2	< 1	< 1.0	< 1.0
Ammonia, Total (as N)	mg/L	-	< 0.03	< 0.05	< 0.05	< 0.05	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.09	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.050	0.1
Biological Oxygen Demand	mg/L	-	-	< 2	< 2	< 2	-	< 2	< 2	-	-	-	-	-	-	-	-	-	-	-	-	< 2	< 2	< 2	< 2
Chloride	mg/L	-	< 0.5	< 5	1	1	-	< 1	< 1	< 1	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1.0	< 1.0
Hardness (as CaCO3)	mg/L	-	6.3	1	1	1	-	1	1	1.2	1.2	1	1	1	1	1.1	< 1	1	1	1.6	1	1.2	1.4	1.3	1.3
Nitrate (as N)	mg/L	-	< 0.2	< 0.1	< 0.1	< 0.1	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.10	< 0.10
Nitrite (as N)	mg/L	-	< 0.2	< 0.01	< 0.01	< 0.01	-	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.010	< 0.010
Organic Nitrogen (Calculated)	mg/L	-	-	0.48	0.38	0.38	-	-	0.48	0.27	0.27	0.27	0.08	0.18	0.01	0.18	0.27	0.18	0.18	0.18	0.18	0.27	0.17	0.34	0.22
Sulphate	mg/L	-	3	< 5	< 1	< 1	-	< 1	< 1	< 1	< 1	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	3.1	2.7
Total Dissolved Solids	mg/L	-	5	10	13	< 10	-	< 1	1	54	< 10	30	75	15	35	45	35	30	10	< 10	45	15	20	15	10
Total Kjeldahl Nitrogen	mg/L	-	-	0.5	0.4	0.4	-	-	0.5	0.3	0.3	0.3	0.1	0.2	0.1	0.2	0.3	0.2	0.2	0.2	0.2	0.3	0.19	0.36	0.32
Arsenic - Total	mg/L	0.005	< 0.002	< 0.001	< 0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.002	0.001	< 0.001	< 0.001	0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.0012	< 0.0010
Barium - Total	mg/L	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.0020	< 0.0020
Boron - Total	mg/L	0.2	< 0.005	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.010	< 0.010
Cadmium - Total ³	mg/L	0.0001	< 0.0001	0.001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.000090	< 0.000090
Chromium - Total	mg/L	-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.0050	< 0.0050
Copper - Total ⁴	mg/L	0.001	0.001	0.001	< 0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	0.0018	< 0.00090
Iron - Total	mg/L	0.3	0.2	< 0.1	0.1	0.1	< 0.1	< 0.1	0.1	< 0.1	0.1	< 0.1	0.1	0.1	0.1	< 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.15	0.15
Lead - Total ⁵	mg/L	0.001	0.0007	< 0.0005	0.0006	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.00050	0.00052
Phosphorus - Total	mg/L	0.03	0.07	< 0.1	< 0.1	-	-	-	0.014	0.023	< 0.1	0.023	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.018	0.01	0.022	0.01	0.031	0.019
Zinc - Total	mg/L	0.02	0.021	< 0.005	0.007	< 0.005	< 0.005	0.006	0.006	< 0.005	< 0.005	< 0.005	< 0.005	0.009	< 0.005	< 0.005	0.007	< 0.005	< 0.005	< 0.005	0.006	< 0.005	0.005	0.0089	< 0.0050

Notes:

1. PWQO = "Provincial Water Quality Objective". If both a PWQO and an Interim PWQO exist, the Interim PWQO was used for comparison purposes.

2. Dissolved Oxygen PWQO (Warm Water Biota): 7 mg/L with temperature < 5°C, 6 mg/L with temperature 5°C - 10°C, 5 mg/L with temperature 10°C - 15°C, 4 mg/L with temperature > 20°C

3. Cadmium interim PWQO: 0.0001 mg/L with hardness 0 to 100 mg/L; 0.0005 with hardness > 100 mg/L.

4. Copper interim PWQO: 0.001 mg/L w ith hardness 0 to 20 mg/L; 0.005 w ith hardness > 20 mg/L.

5. Lead interim PWQO: 0.001 mg/L with hardness < 30 mg/L; 0.003 mg/L with hardness 30 to 80 mg/L; and 0.005 mg/L with hardness > 80 mg/L.

6. Concentrations that did not meet the PWQO are shaded.

Source:

R:\SE\048 Temagami\02_Sisk\Work\2024\[048_Sisk_SW Quality_Crosstab_10Jan24_EK.xlsx]SW1

4.4.2 Recommendations Regarding Surface Water

Surface water monitoring should continue at SW1 twice per year as required by the ECA. This will provide additional information to determine the potential role this small unnamed lake is having regarding the Site's groundwater chemistry. The acidic nature of the unnamed lake is characteristic of northern bogs and pH values below the PWQO are not of concern.

Due to the role of this lake in the local groundwater recharge and therefore its potential impact on the Site groundwater chemistry, the water elevation of the unnamed lake should be surveyed annually during the fall monitoring event.

4.5 Combustible Vapours in Monitoring Wells

During the field sampling, combustible vapour concentrations were measured in the monitoring wells with an RKI Eagle Combustible Gas Monitor. All of the concentrations of combustible gas in the monitoring wells were low and did not approach combustible concentrations.

5 Conclusions and Recommendations

At the end of 2023, the estimated total volume of waste and cover material deposited at the Site was approximately 19 960 m³. Therefore, the remaining capacity is approximately 20 040 m³ which corresponds to an estimated life expectancy of approximately 37 years. SEI proposes to conduct annual topographic surveys of the Site using an RPAS to gather topographic information in an efficient manner. Annual RPAS data will provide reliable estimates of the waste volume and cover material deposited at the Site.

The windblown debris at the landfill should be controlled by implementing a smaller working face in the Fill Area and maintaining temporary fencing around this area. To facilitate more efficient operation of the landfill, the configuration of the footprint should be altered, with MECP approval, into a rectangular or square shape. Once approved, the new configuration of the footprint should be clearly flagged with large visible posts to mark each corner.

During the April and November 2023 sampling campaigns, concentrations of one health-related and several non-health related parameters greater than the respective RUC were observed at MW1, MW2, and MW4. However, exceedances of the RUC at these groundwater monitoring wells in close proximity to the Fill Area are expected and the RUC is not technically applicable to these wells since they are close to the Fill Area and not at the property boundaries. This suggests that three of the four wells on the Site (MW1, MW2, and MW4), are impacted by landfill leachate. However, the total extent of leachate impact at the Site cannot be established based on the limited number of monitoring wells, especially downgradient of the landfill.

It is recommended that two to three additional monitoring wells be installed further downgradient of the Fill Area over the next few years. These additional wells will provide a better understanding of the extent of the leachate plume downgradient from the landfill.

Finally, considering the findings obtained through the completion of 12 annual reports for this landfill, the landfill monitoring and chemical sampling of surface water and groundwater should continue on a semi-annual basis, one event in the spring and one event in the fall, with a report submitted to the MECP annually. However, in the situation that an amendment is made to the current ECA, it is SEI's view that the reporting could be changed so that reports are submitted to the MECP every two years with continued semi-annual water quality monitoring.

6 References

- ODM, 1967. Ontario Department of Mines Preliminary Geological Map No. P. 394 Tomiko Sheet District of Nipissing.
- ODNA, 1971. Ontario Department of Northern Affairs Preliminary Map P. 678, Geological Series Tomiko Area (West Half) District of Nipissing.
- OGS, 1979. Northern Ontario Engineering Geology Terrain Study, Data Base Map, Tomiko, Ontario Geological Survey Map 5040, NTS 31L/NW.
- MOE, 1986. Incorporation of the Reasonable Use Concept into MOE Groundwater Management Activities, Ontario Ministry of the Environment Water Resources Branch, September 1986.
- WEG, 2001. Hydrogeological Assessment Briggs Township MNR Landfill Site Temagami, Ontario, August 1991, Waters Environmental Geosciences Ltd., Lively, Ontario, 9 pages + appendices.
- SEI, 2023. The Corporation of the Municipality of Temagami Sisk Landfill 2023 Annual Report, May 2023.

7 Qualifications and Limitations

This document was prepared and reviewed by the undersigned.

Prepared by:

Janani Tamil Alagan, M.Eng. Environmental Engineering Intern

Reviewed and Approved by:

Maria Story, P.Eng. President

A description of the limitations, which are inherent to these types of studies, is outlined below. This information forms an integral part of this document.

This report is intended to provide information to The Corporation of the Municipality of Temagami. SEI is not a party to the various considerations underlying The Corporation of the Municipality of Temagami's business decisions and does not make recommendations regarding such business decisions. In providing this report, SEI accepts no liability or responsibility in respect of the site described in this report or for any business decisions relating to the site. SEI accepts no liability or responsibility for any damages that may be suffered or incurred by any third party as a result of the use of, reliance on, or any decision made based on this report.

The findings, conclusions, and recommendations in this report have been developed in a manner consistent with the level of skill normally exercised by environmental professionals currently practicing under similar conditions in the area. The findings contained in this report are based, in part, upon information provided by others. If any of the information is inaccurate, modifications to the findings, conclusions, and recommendations may be necessary.

The findings, conclusions, and recommendations presented by SEI in this report reflect SEI's best judgment based on the site conditions on the date(s) set out in this report and on information available at the time of preparation of this report. They have been prepared for specific application to this site and are based, in part, upon visual observation of the site, information available from historical databases, and interviews with people whom are knowledgeable regarding the site. The findings cannot be extended to previous or future site conditions or to portions of the site, which were unavailable for direct observation.

The findings and conclusions of this report are valid only as of the date of this report. If site conditions change, new information is discovered, or unexpected site conditions are encountered in future work, SEI should be requested to re-evaluate the findings, conclusions, and/or recommendations of this report, and to provide amendments as required.

Copying of this report is not permitted without the express permission of The Corporation of the Municipality of Temagami and SEI.

Appendix A

Environmental Compliance Approval

Ministère de l'Environnement AMENDMENT TO PROVISIONAL CERTIFICATE OF APPROVAL WASTE DISPOSAL SITE NUMBER A7134301 Notice No. 1 Issue Date: March 7, 2008

Her Majesty the Queen in Right of Ontario as represented by the Ministry of Natural Resources Box 3070 North Bay, Ontario P1B 8K7
Site Location: Sisk Township Landfill unsurveyed Temagami Municipality, District of Nipissing

You are hereby notified that I have amended Provisional Certificate of Approval No. A7134301 issued on February 3, 1981 for the use and operation of a 1.02 hectare waste disposal site within a total area of 12.25 hectares, as follows:

I. Definitions

The following definitions are added:

(a) "Certificate" means this Provisional Certificate of Approval including all Notices of Amendment;

(b) "Director" means Director, Section 39, *Environmental Protection Act*, R.S.O. 1990, C. E-19 as amended;

(c) "District Manager" means the District Manager, North Bay District Office, Northern Region, Ontario Ministry of the Environment;

(d) "*EPA*" means the *Environmental Protection Act*, R.S.O. 1990, C. E-19 as amended.

(e) "Ministry" means the Ontario Ministry of the Environment;

(f) "*Operator* " means any person, other than the Owner's employees, authorized by the Owner as having the charge, management or control of any aspect of the site and includes its successors or assigns;

(g) "*Owner*" means any person that is responsible for the establishment or operation of the site being approved by this *Certificate*, and includes the Ministry of the Natural Resources, its successors and assigns;

(h) "Regional Director" means the Regional Director, Northern Region, Ontario Ministry of the Environment; and

(i) "Regulation 347" means Ontario Regulation 347, R.R.O. 1990; as amended.

The following Conditions are hereby added:

II. GENERAL

Compliance

2. The *Owner* and Operator shall ensure compliance with all the conditions of this Certificate and shall ensure that any person authorized to carry out work on or operate any aspect of the *Site* is notified of this *Certificate* and the conditions herein and shall take all reasonable measures to ensure any such person complies with the same.

3. Any person authorized to carry out work on or operate any aspect of the *Site* shall comply with the conditions of this *Certificate*.

In Accordance

4. Except as otherwise provided for in this *Certificate*, the *Site* shall be designed, developed, built, operated and maintained in accordance with the EPA, the Conditions in this *Certificate*, and the supporting documentation listed in Schedule "A".

Interpretation

5. Where there is a conflict between a provision of any document, including the application, referred to in this *Certificate*, and the conditions of this *Certificate*, the conditions in this *Certificate* shall take precedence.

6. Where there is a conflict between the application and a provision in any documents listed in Schedule "A", the application shall take precedence, unless it is clear that the purpose of the document was to amend the application and that the *Ministry* approved the amendment.

7. Where there is a conflict between any two documents listed in Schedule "A", other than the application, the document bearing the most recent date shall take precedence.

8. The conditions of this *Certificate* are severable. If any condition of this *Certificate*, or the application of any condition of this *Certificate* to any circumstance, is held invalid or unenforceable, the application of such condition to other circumstances and the remainder of this *Certificate* shall not be affected thereby.

Other Legal Obligations

9. The issuance of, and compliance with, this *Certificate* does not:

a. relieve any person of any obligation to comply with any provision of any applicable statute, regulation or other legal requirement; or

b. limit in any way the authority of the *Ministry* to require certain steps be taken or to require the *Owner* and *Operator* to furnish any further information related to compliance with this *Certificate*;

Adverse Effect

10. The Owner and Operator shall take steps to minimize and ameliorate any adverse effect on the natural environment or impairment of water quality resulting from the *Site*, including such accelerated or additional monitoring as may be necessary to determine the nature and extent of the effect or impairment.

11. Despite an Owner, Operator or any other person fulfilling any obligations imposed by this certificate the person remains responsible for any contravention of any other condition of this *Certificate* or any applicable statute, regulation, or other legal requirement resulting from any act or omission that caused the adverse effect to the natural environment or impairment of water quality.

Change of Owner

12. The *Owner* shall notify the *Director*, in writing, and forward a copy of the notification to the *District Manager*, within 30 days of the occurrence of any changes in the following information:

- a. the ownership of the *Site*;
- b. the Operator of the *Site*;
- c. the address of the Owner or Operator;

d. the partners, where the *Owner* or *Operator* is or at any time becomes a partnership and a copy of the most recent declaration filed under the *Business Names Act*, R. S. O. 1990, c. B.17, shall be included in the notification;

13. No portion of this *Site* shall be transferred or encumbered prior to or after closing of the Site unless the *Director* is notified in advance and sufficient financial assurance (if required) is deposited with the *Ministry* to ensure that these

conditions will be carried out. In the event of any change in *Ownership* of the works, other than change to a successor municipality, the *Owner* shall notify the successor of and provide the successor with a copy of this *Certificate*, and the Owner shall provide a copy of the notification to the *District Manager* and the *Director*.

Certificate of Prohibition

14. Unless exempt, pursuant to Section 197 of the *EPA*, no person having an interest in the *Site* shall deal in any way with the *Site* without first giving a copy of this *Certificate* to each person acquiring an interest in the *Site* as a result of the dealing.

15. Unless exempt, two (2) copies of a completed Certificate of Prohibition, containing a registerable description of the *Site*, shall be submitted to the Director for the Director's signature within 60 calendar days of the date of this *Certificate*.

16. The Certificate of Prohibition shall be registered in the appropriate land registry office on title to the *Site* by the *Owner* within 10 calendar days of receiving the Certificate of Prohibition signed by the *Director*, and a duplicate registered copy shall be submitted to the *Director*.

Inspections

17. No person shall hinder or obstruct a *Provincial Officer* from carrying out any and all inspections authorized by the *OWRA*, the *EPA*, or the *PA*, of any place to which this *Certificate* relates, and without limiting the foregoing:

a. to enter upon the premises where the approved works are located, or the location where the records required by the conditions of this *Certificate* are kept;

b. to have access to, inspect, and copy any records required to be kept by the conditions of this *Certificate*;

c. to inspect the Site, related equipment and appurtenances;

d. to inspect the practices, procedures, or operations required by the conditions of this *Certificate*; and

e. to sample and monitor for the purposes of assessing compliance with the terms and conditions of this *Certificate* or the *EPA*, the *OWRA* or the *PA*.

Information and Record Retention

18. Any information requested, by the *Ministry*, concerning the *Site* and its operation under this *Certificate*, including but not limited to any records required to be kept by this *Certificate* shall be provided to the Ministry, upon request, in a timely manner. Records shall be retained for (5) five years except for as otherwise authorized in writing by the *Director*.

19. The receipt of any information by the *Ministry* or the failure of the *Ministry* to prosecute any person or to require any person to take any action, under this *Certificate* or under any statute, regulation or other legal requirement, in relation to the information, shall not be construed as:

a. an approval, waiver, or justification by the *Ministry* of any act or omission of any person that contravenes any term or condition of this *Certificate* or any statute, regulation or other legal requirement; or

b. acceptance by the *Ministry* of the information's completeness or accuracy.

III. SITE OPERATIONS

Operations

20. (1) The Site shall be developed, operated and maintained in accordance with the documents listed in Schedule "A".

(2) Any changes to the Site's Design and Operation Manual shall be submitted to the District Manager prior to

their implementation.

21. Only municipal waste as defined in the *EPA* may be landfilled at the site. No liquid industrial waste or hazardous waste shall be disposed of at the landfill.

22. The site shall have a maximum volume capacity of **40,000** cubic meters.

23 A sign shall be posted in a prominent location at the Site entrance clearly stating the following:

i. Owner's name;
ii. Operator's name;
iii. Provisional Certificate of Approval No.;
iv. Type of Waste Accepted
v. the hours of operation;
vi. Public access to the *Site* is prohibited during non-operational hours; and
vii. Contact telephone number to call with complaints or in the event of an emergency.

24. (i) Only clean wood and brush shall be permitted for burning. Burning of the materials shall be completed as per the Ministry of the Environment Guideline C-7 (Burning at Landfill Sites);

(ii) the clean wood/brush area shall be clearly marked with a sign(s) that prohibits the public from approaching the area when burning operations are occurring.

(iii) The Owner shall ensure there is a designated area for ash material.

Limit of Landfill

25. By **June 1, 2009**, the owner shall clearly define the boundaries of the limit of waste by installing permanent markers that can be visible year-round.

Hours of Operation

26. Waste shall only be accepted at the *Site* during the following time periods:

i. Tuesdays and Thursdays 12:30 p.m. - 4:30 p.m.; and ii. Saturdays 8:00 a.m. - 12:00 p.m.

27. With the prior written concurrence of the *District Manager* the time periods may be reduced or extended to accommodate seasonal or unusual quantities of waste.

28. During non-operating hours, the site entrance and exit gates shall be locked and the *Site* shall be secured against access by unauthorized persons.

<u>Cover Material</u>

29. Cover shall be placed over the entire working face with a minimum thickness of 150 mm of soil cover or an approved thickness of alternative cover material as a minimum follows:

i. From April 1 to December 1, daily cover shall be placed on a monthy basis ii. From December 2 to March 30 daily cover shall be placed as required.

30. Intermediate Cover shall be placed in areas where landfilling has been temporarily discontinued for six (6) months or more. A minimum thickness of 300 mm of soil cover or an approved thickness of alternative cover material shall be placed.

31. Type and thickness of alternative cover must be approved by the *Director* prior to implementation.

IV. INSPECTION AND MONITORING

32. An inspection of the entire *Site* and all equipment on the *Site* shall be conducted each day the Site is open for operation to ensure it is being operated in compliance with this *Certificate*.

33. The Owner shall maintain written records at the Site including as a minimum the following information:

i. date of record;
ii. categories and approxiamate quantities of waste received;
iii. record of routine *Site* inspections;
iv. record of complaints and other communications related to operational practices at the Site along with actions taken to address complaints or other communications issues;

34. (1) The *Owner* shall at least three times per year (once in each of the spring, summer and fall) collect groundwater elevations from the monitoring wells located on the site. The *Owner* shall provide the elevations in meter above sea level in the Annual Report required under Condition 38.

(2) The *Owner* shall at least once per year (fall) survey the top of water elevation for the un-named lake to the north of the landfill site. The *Owner* shall provide the information on water level elevations in meters above sea level in the Annual Report required under Condition 38.

(3) In the event, the water level in the un-named lake to the north is at a lower elevation than the groundwater levels in any of the groundwater monitoring wells, the Owner shall notify the District Manager in writing within fourteen (14) days of determining that water level in the un-named lake is at a lower elevation than the groundwater elevation in the groundwater monitoring wells around the landfill site.

(4) The Owner shall within thirty (30) of forwarding the letter required in Condition 34(3) submit to the Director for approval, with copies to the *District Manager*, an groundwater and surface water monitoring program for the site. When developing the environmental monitoring plan, the owner shall consult with the District Office to discuss the location of the various monitoring stations. The plan shall include but not be limited to the following:

- i. a drawing showing the proposed sampling locations;
- ii. parameters that shall be analyzed;
- iii. the sampling frequency;
- iv. the groundwater measurement, flow measurement and sampling protocols;

35. The *Owner* shall ensure that all groundwater monitoring wells which form part of the monitoring program are properly capped, locked and protected from damage.

36. Where landfilling is to proceed around monitoring wells, suitable extensions shall be added to the wells, and the wells shall be properly re-secured.

37. Any groundwater monitoring wells included in the on-going monitoring program that are damaged shall be assessed, repaired, replaced or decommissioned by the *Owner*, as required.

a. The *Owner* shall repair or replace any monitoring well which is destroyed or in any way made to be inoperable for sampling such that no more than one regular sampling event is missed.b. All monitoring wells which are no longer required as part of the groundwater monitoring program, and have been approved by the *Director* for abandonment, shall be decommissioned by the *Owner*, as required, in accordance with good standard practice that will prevent contamination through the abandoned well. A report on the decommissioning of the well shall be included in the

annual monitoring report for the period during which the well was decommissioned.

V. ANNUAL REPORT

38. By no later than **May 31, 2009** and then by every May 31 thereafter, the *Owner* shall submit to the *District Manager*, an annual report on the development, operation and environmental monitoring of the *Site*. The report shall include as a minimum the following:

a. the results and an interpretive analysis of all leachate, groundwater, surface water and landfill gas monitoring; a report on the status of all monitoring wells;

b. changes or improvements made to the Site's structure, features and operations;

c. a summary of operational problems encountered at the *Site* and steps taken to resolve these problems;

d. assessment of future monitoring needs, any recommended changes to the program, e. estimated calculations of the volume of waste, daily and intermediate cover and final cover deposited or placed at the *Site* during the reporting period, an estimate of the total volume of the

Site capacity used in the reporting period;

f. a calculation of the remaining capacity of the *Site* and an estimate of the remaining *Site* life; g. a summary of any complaints received and responses made; and

h. any other information with respect to the Site which the Regional Director or District Manager may require from time to time.

VII. CLOSURE PLAN

39. At least two (2) years prior to the anticipated date of closure of this *Site*, the *Owner* shall submit to the *Director* for approval, with copies to the *District Manager*, a detailed Site Closure Plan pertaining to the termination of the landfilling operations at this *Site*. This plan shall include, as a minimum, a description of the work that will be done to facilitate the closure of the *Site* and the schedule for completion of that work; post closure inspection, maintenance and monitoring, and end use.

Schedule "A"

1. Application for a Certificate of Approval for a Waste Disposal Site, dated January 29, 2003 and signed by John Hodgson, the Municipality of Temagami.

2. Report entitled "Hydrogeological Assessment, Sisk Township, MNR Landfill Site, Temagami, Ontario", prepared by Waters Environmental Geosciences Ltd. and dated August 2001.

3. Report entitled "Landfill Operations Manual, Sisk Township Landfill Site, Temagami, Ontario", prepared by Waters Environmental Geosciences Ltd. and dated August 2002.

4. Letter dated August 3, 2005 addressed to the Ministry of Natural Resources from Kenneth D.N. Boal, Chief Administrative Officer, The Corporation of the Municipality of Temagami which indicates the Municipality's desire to purchase the landfill site.

5. Letter dated August 18, 2005 addressed to Mr. Don Farintosh, Ministry of Natural Resources from Kenneth D.N. Boal, Chief Administrative Officer, The Corporation of the Municipality of Temagami indicating that council resolved that the municipality proceed with the landfill acquisition.

The reasons for this amendment to the Certificate of Approval are as follows:

1. The reason for Conditions (2), (3), (4), (5), (6), (7), (8), (9), (10), (11) is to clarify the legal rights and responsibilities of the Owner under this Certificate of Approval.

2. The reasons for Condition (12) are to ensure that the Site is operated under the corporate name which appears on the application form submitted for this approval and to ensure that the Director is informed of any changes.

3. The reasons for Condition (13) are to restrict potential transfer or encumbrance of the Site without the approval of the Director and to ensure that any transfer of encumbrance can be made only on the basis that it will not endanger compliance with this Certificate of Approval.

4. Condition (14), (15) and (16) is included, pursuant to subsection 197(1) of the EPA, to provide that any persons having an interest in the Site are aware that the land has been approved and used for the purposes of waste disposal.

5. The reason for Condition (17) is to ensure that appropriate Ministry staff have ready access to the Site for inspection of facilities, equipment, practices and operations required by the conditions in this Certificate of Approval. This condition is supplementary to the powers of entry afforded a Provincial Officer pursuant to the EPA and OWRA.

6. The reasons for Conditions (18) and (19) are to provide for the proper assessment of effectiveness and efficiency of site design and operation, their effect or relationship to any nuisance or environmental impacts, and the occurrence of any public complaints or concerns. Record keeping is necessary to determine compliance with this Certificate of Approval, the EPA and its regulations.

7. Condition No. 20 is included to ensure that the Site is operated in accordance with the application and supporting documentation submitted by the Owner, and not in a manner which the Director has not been asked to consider.

8. Condition No. 21 is included to ensure the Owner is aware that only municipal waste is permitted for landfilling at the Site.

9. Condition No. 22 is included to clearly identify the Site's waste capacity.

10. Condition No. 23 and 24 are to ensure the landfill is operated in accordance with Ministry standards, and to ensure the long-term protection of the health and safety of the public and the environment.

11. Condition No. 25 is included to ensure the owner installs permanent marker to allow the operator and Ministry staff to clearly see where the limits of landfilling are located. This will allow the operator to identify where waste can be placed. This is to ensure the long-term health and safety of the public and the environment.

12. Conditions Nos. 26 and 27 are included to specify the normal hours of operation for the landfill Site and a mechanism for amendment of the hours of operation.

13. Condition No. 28 is included to ensure controlled access and integrity of the Site by preventing unauthorized access when the Site is closed and no Site attendant is on duty.

14. Condition No. 29, 30 and 31 are included to ensure the owner places cover (daily or interim) over the waste.

15. Conditions Nos. 32 and 33 are included to ensure the Site is operated, inspected and maintained in an environmentally acceptable manner and does not result in a hazard or nuisance to the natural environment or any person.

16. Condition No. 34 is included to require the Owner to monitor groundwater levels to ensure the groundwater flow direction is not towards the un-named lake and to ensure the Owner has an established an acceptable monitoring program for the groundwater and the surface water at the site should it be determined that groundwater flow at the site changes from the information presented in the Hydorgeological Report. This is to ensure the long-term health and safety of the public and the environment.

17. Conditions Nos. 35, 36, and 37 are included to ensure the integrity of the groundwater monitoring network so that accurate monitoring results are achieved and the natural environment is protected.

18. Condition No. 38 is included to ensure that regular review of site development, operations and monitoring data is documented and any possible improvements to site design, operations or monitoring programs are identified. An annual

report is an important tool used in reviewing Site activities and for determining the effectiveness of Site design.

20. Condition No. 39 is included to ensure that final closure of the Site is completed in an esthetically pleasing manner and to ensure the long term protection of the natural environment.

This Notice shall constitute part of the approval issued under Provisional Certificate of Approval No. A7134301 dated February 3, 1981

In accordance with Section 139 of the <u>Environmental Protection Act</u>, R.S.O. 1990, Chapter E-19, as amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the <u>Environmental Protection Act</u>, provides that the Notice requiring the hearing shall state:

1. The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;

2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The Certificate of Approval number;
- 6. The date of the Certificate of Approval;
- 7. The name of the Director;
- 8. The municipality within which the waste disposal site is located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary* Environmental Review Tribunal 2300 Yonge St., 12th Floor P.O. Box 2382 Toronto, Ontario M4P 1E4 AND

The Director Section 39, *Environmental Protection Act* Ministry of Environment and Energy 2 St. Clair Avenue West, Floor 12A Toronto, Ontario M4V 1L5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted waste disposal site is approved under Section 39 of the Environmental Protection Act.

DATED AT TORONTO this 7th day of March, 2008

Tesfaye Gebrezghi, P.Eng. Director Section 39, *Environmental Protection Act*

DG/ c: District Manager, MOE North Bay Appendix B

Borehole Logs

E	Bore	hole	F	igure 3	Wa	aters Environm	mental Geosciences Ltd.				
	BH	- 1			S	isk Twp. MNF	R Lar	ndfill		╽╢╢┝╴	
P	roject 20-1	Number 106c		Date Started 22/04/2001	1	Date Complet 22/04/2001	ed	Drawn by : F Checked by :	PAR PAR		
Well Construction	Depth (m)	Elevation (m) Relative to Datum	Stratigraphy	D	esci	iption	Sample Type	Standard Penetration Test (counts)	Natura Co 20	Il Moisture ontent (%) 4060	
	0.0	93.76 m								······································	
		93.46 m		Garbage	and	Fill, domestic	l				
		· · · · · · · · · · · · · · · · · · ·			topsol	'/	1				
				Sand, silty below 1.52	/, brow m	n, becoming wet	 				
	1.0			D01011 1.02			SS1	2,2,3			
							000	1 0 0			
	2-0-						<u>9</u> 92	1,2,3			
		91.47 m									
				Sand, som	ne silt.	trace gravel	SS3	1,1,1			
				brown, wet							
	3.0						 				
				•			SS4	1,2,2	•		
		90.26 m				·····	ļ				
-			ļ	Borehole at a depth o	f 3.50	inated, in sand m below grade					
	4.0					5					
ļ							Ì				
	5.0										
				1) Bor	ehole	BH-1 was					
				advanced u	sing 1	08 mm hollow					
ļ				2) Ref	s. er to tl	ne accompanying	l				
	6.0			text for well and an inter	consti pretat	ruction details					
. -				information.	F 1-1						
-		Ì					ĺ			-	
	7 0-										
	1.0										
NOTE	E : Str	ratigraphic	boun	daries are	appro	oximate, and in-	situ tr	ansitions betwe	en the id	dentified	
soll ty Samr	pes r les ir	nay be gra	idual. s (AS)	Refer to th	ne aco nnle	companying tex (SS) split speer	t for a	n interpretation.			
Wate	r leve	l on 07/06/	2001	recorded a	as 93	.25 m (relative t	o ider	ntified datum).	Pa	ige 1 of	

· _ ,	E	Bor	ehole	F	igure 4	Wa	iters Environm	Waters Environmental Geosciences Ltd.						
		Bŀ	1 - 2			Si	sk Twp. MNF	R Lar	dfill					
	Pi	roject 20-	Number 106c		Date Started 22/04/2001		Date Complet 22/04/2001	ted	Drawn by : F Checked by :	YAR PAR				
	Well Construction	Depth (m)	Elevation (m) Relative to Datum	Stratigraphy	D	escr	iption	Sample Type	Standard Penetration Test (counts)	Natura Co (20	I Moisture ontent %) 40 60			
		0.0	94.82 m											
					150 mm T trace of grav	opso vel, bro	oil, over Sand , own to black							
		1.0	93.30 m					SS1	2,2,4					
		2.0			Organic F with some sa	eat, land, b	black, fibrous, ecoming wet	SS2	1,1,1					
		· · · · · · · · · · · · · · · · · · ·						SS 3	see note (2)					
		3.0	91.77 m		0			004						
		4.0			Sand, med brown, wet	ium to	fine, grey-	334	4,5,6					
		5.0	<u>89.80 m</u>					SS5	see note (2)					
		6.0			Borehole terminated, in sand at a depth of 5.02 m below grade 1) Borehole BH-2 wa advanced using 108 mm h stem augers. 2) No blow counts w recorded when the split sp									
		7.0							under the weight rods. 2) Refer to text for well cons and an interpreta information.	of the dri the accor truction d tion of th	lling npanying etails is			
	NOTE soil typ	: : Sti pes r	ratigraphic I nay be grad	bound dual.	daries are a Refer to the	appro e acc	ximate, and in-sompanying text	situ tra for ar	insitions between interpretation.	n the id	entified			
Ĺ	Vater	ater level on 07/06/2001 recorded as 93.42 m (relative to identified datum).												

. ..

	Bor	ehole	F	igure 5	Geosciences L	.td.					
	Bŀ	1 - 3			Si	isk Twp. MNF	R Lar	ndfill		┝┥┝┘╤	
Р	rojec 20-	t Number 106c		Date Started 23/04/2001		Date Comple 23/04/2001	ted	Drawn by : F Checked by :	PAR PAR		
Well Construction	Depth (m)	Elevation (m) Relative to Datum	Stratigraphy	D	escr	iption	Sample Type	Standard Penetration Test (counts)	Natura Co (20	Moisture Intent %) 40 60	
	0.0	96.18 m									
	0.0 1.0 2.0 3.0 4.0 5.0	96.18 m 93.89 m 91.15 m		100 mm T and Grav wet below 2 Sandy Grav Borehole sandy grave below grade <u>NOTE:</u> 1) Bore advanced us	Topso el, bro .13 m avel, avel, term at a hole E	pil, over Sand own, becoming grey, wet grey, wet inated, in depth of 5.03 m BH-3 was b8 mm hollow	SS1 SS2 SS3 SS4 SS5	4,4,3 5,6,7 6,8,8 5,7,9 3,3,4			
	Stern adgers.2)Refer to the accompanying text for well construction details and an interpretation of this information.										
NOTE soil ty Samp Water	NOTE : Stratigraphic boundaries are approximate, and in-situ transitions between the identified soil types may be gradual. Refer to the accompanying text for an interpretation. Samples indicated as (AS) auger sample, (SS) split spoon or (NR) no recovery. Nater level on 07/06/2001 recorded as 93.36 m (relative to identified datum) Page 1 of 1										

BFI - 4 Sisk Twp. MNR Landfill Project Number 20-106c Date Started 22/04/2001 Date Completed 22/04/2001 Drawn by : PAR Checked by : PAR ignorphic ignor	BH - 4 Sisk Twp. MNR Landfill Project Number 20-106c Date Started 22/04/2001 Date Completed 22/04/2001 Drawn by : PAR Checked by : PAR International Started 20-106c Description Internation Test Internation Internation I	Bore	hole	F	Figure 6 Waters Environmental Geosciences Ltd.									
Project Number 20-106c Date Started 22/04/2001 Date Completed 22/04/2001 Drawn by : PAR Checked by : PAR Checked by : PAR uoting by by by by by by by by by by by by by	Project Number Date Started 22/04/2001 Date Completed 22/04/2001 Drawn by: PAR Checked by: PAR Image: Solution of the started started by the started of solution of this information. Image: Started 22/04/2001 Description Image: Started Started Penetration Test (%) Image: Solution of this information. Image: Started Started Penetration Test (%) Started Penetration Test (%) Started Penetration Test (%) Image: Solution of this information. Image: Started Started Penetration Test (%) Started Penetration Test (%) Image: Solution of this information. Image: Started Penetration Test (%) Started Penetration Test (%) Image: Solution of this information. Image: Started Penetration Test (%) Started Penetration Test (%) Image: Solution of this information. Image: Started Penetration Test (%) Started Penetration Test (%) Image: Solution of this information. Image: Started Penetration Test (%) Started Started Penetration Test (%) Image: Solution of this information. Image: Started Penetration Test (%) Started St	BH	- 4			Si	sk Twp. MN	R Lar	ndfill					
uotion in the second	Image: Standard generation for the second standard of the second standard standa	Project i 20-1	Number 06c		Date Started 22/04/2001		Date Comple 22/04/200	eted 1	Drawn by : I Checked by :	PAR PAR	U			
0.0 93.89 m 100 mm Topsoil, over Sand and Gravel, brown, becoming wet below 0.31 m 1.0 0.0 SS1 4.4.3 1.0 0.0 SS2 5.6.9 2.0 0.0 SS3 4.5.6 90.39 m 0.0 SS4 6.8.8	0.0 93.89 m 100 mm Topsoil, over Sand and Gravel, brown, becoming wet below 0.31 m 1.0 581 4,4,3 2.0 582 5,6,9 3.0 583 4,5,6 90.39 m 584 6,8,8 90.39 m 550 554 5.0 NOTE: 1) 1) Borehole terminated, in sand and gravel at a depth of 3.50 m below grade 5.0 NOTE: 1) Borehole BH-4 was advanced using 108 mm hollow stem augers. 2) Refer to the accompanying text for well construction details and an interpretation of this information.	Well Construction Depth (m)	Elevation (m) Relative to Datum	Stratigraphy	D	escr	iption	Sample Type	Standard Penetration Test (counts)	Natura Cc (20	I Moist Intent %) _40			
100 mm Topsoil, over Sand and Gravel, brown, becoming wet below 0.31 m 1.0 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00 1.0 0.00	100 mm topsol, over Sand and Gravel, brown, becoming wet below 0.31 m 100 mm topsol, over Sand and gravel, brown, becoming wet below 0.31 m 100 mm topsol, over Sand and gravel, brown, becoming ssi 100 mm topsol, over Sand ssi 100 mm topsol, over Sand and gravel, brown, becoming ssi 100 mm topsol, over Sand ssi 10 mm topsol, over Sand ssi 10 mm topsol, over Sand stem augers. 10 mm topsol, over Sand stem augers. 10 mm topsol, over Sand stem augers. 11 m topsol, over Sand stem augers. 12 m topsol, over Sand stem augers. 13 m topsol, over Sand stem augers. 14 m topsol, over Sand stem augers. 15 m topsol, over Sand stem augers. 10 m topsol, over Sand stem augers. 11 m topso	0.0	93.89 m	0.10	400 7					L	<u>_</u>			
	4.0 Borehole terminated, in sand and gravel at a depth of 3.50 m below grade 5.0 NOTE: 1) Borehole BH-4 was advanced using 108 mm holiow stem augers. 2) Refer to the accompanying text for well construction details and an interpretation of this information. 7.0 To the accompanying text for well construction of this information.		90.39 m		100 mm T and Grave wet below 0.	opso el, bro .31 m	oil, over Sand	SS1 SS2 SS3 SS4	4,4,3 5,6,9 4,5,6 6,8,8		-			
OTE : Stratigraphic boundaries are approximate, and in-situ transitions between the identified oil types may be gradual. Refer to the accompanying text for an interpretation.		amples indi /ater level c	cated as (01/06/20	AS) a 001 re	auger samp ecorded as	ole, (S 93.1	SS) split spoon 9 m (relative to	or (NF identi	R) no recovery. fied datum).	Pag	e 1 of			

Appendix C

Laboratory Certificates of Analysis

Your Project #: 048-02-33 Site#: Sisk Landfill Site Location: Sisk Landfill Your C.O.C. #: 928793-01-01

Attention: Beata Bradley

Story Environmental Inc 332 Main Street P.O. Box 716 Haileybury, ON CANADA POJ 1KO

> Report Date: 2024/04/09 Report #: R8100353 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C3C0064

Received: 2023/04/28, 09:17

Sample Matrix: Water # Samples Received: 5

		Date	Date		
Analyses Q	uantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	2	N/A	2023/05/03	CAM SOP-00448	SM 23 2320 B m
Alkalinity	3	N/A	2023/05/06	CAM SOP-00448	SM 23 2320 B m
Biochemical Oxygen Demand (BOD)	5	2023/04/29	2023/05/04	CAM SOP-00427	SM 23 5210B m
Chloride by Automated Colourimetry	5	N/A	2023/05/03	CAM SOP-00463	SM 23 4500-Cl E m
Dissolved Organic Carbon (DOC) (1)	2	N/A	2023/05/02	CAM SOP-00446	SM 23 5310 B m
Dissolved Organic Carbon (DOC) (1)	2	N/A	2023/05/03	CAM SOP-00446	SM 23 5310 B m
Hardness (calculated as CaCO3)	5	N/A	2023/05/03	CAM SOP	SM 2340 B
				00102/00408/00447	
Dissolved Metals by ICPMS	4	N/A	2023/05/03	CAM SOP-00447	EPA 6020B m
Total Metals Analysis by ICPMS	1	2023/05/01	2023/05/02	CAM SOP-00447	EPA 6020B m
Total Ammonia-N	5	N/A	2023/05/04	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (2)	5	N/A	2023/05/02	CAM SOP-00440	SM 23 4500-NO3I/NO2B
Sulphate by Automated Turbidimetry	5	N/A	2023/05/03	CAM SOP-00464	SM 24 4500-SO42- E m
Total Dissolved Solids	5	2023/05/02	2023/05/03	CAM SOP-00428	SM 23 2540C m
Total Kjeldahl Nitrogen in Water	5	2023/05/03	2023/05/03	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	5	2023/05/03	2023/05/03	CAM SOP-00407	SM 23 4500-P I

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Page 1 of 14

Your Project #: 048-02-33 Site#: Sisk Landfill Site Location: Sisk Landfill Your C.O.C. #: 928793-01-01

Attention: Beata Bradley

Story Environmental Inc 332 Main Street P.O. Box 716 Haileybury, ON CANADA POJ 1KO

> Report Date: 2024/04/09 Report #: R8100353 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C3C0064 Received: 2023/04/28, 09:17

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Elora Di Bratto, Project Manager Email: Elora.Di-Bratto@bureauveritas.com Phone# (905) 817-5700

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 14

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		VRD164		VRD165		VRD166		VRD167				
Sampling Date		2023/04/26		2023/04/26		2023/04/26		2023/04/26				
		09:30		10:05		10:30		11:00				
COC Number		928793-01-01		928793-01-01		928793-01-01		928793-01-01				
	UNITS	MW1	QC Batch	MW2	QC Batch	MW3	QC Batch	MW4	RDL	QC Batch		
Calculated Parameters												
Hardness (CaCO3)	mg/L	530	8635122	120	8635122	86	8635122	400	1.0	8635122		
Inorganics												
Total Ammonia-N	mg/L	2.9	8641475	0.18	8641475	<0.050	8641475	0.66	0.050	8641475		
Total BOD	mg/L	<2	8636708	<2	8636711	<2	8636708	<2	2	8636708		
Total Dissolved Solids	mg/L	355	8640116	120	8640116	85	8640088	600	10	8640116		
Total Kjeldahl Nitrogen (TKN)	mg/L	3.9	8643235	0.52	8643235	0.13	8643235	1.2	0.10	8643235		
Dissolved Organic Carbon	mg/L	7.5	8642184	12	8642065	3.2	8639597	11	0.40	8639597		
Total Phosphorus	mg/L	0.34	8642934	0.029	8642934	0.028	8642934	0.009	0.004	8642934		
Dissolved Sulphate (SO4)	mg/L	4.6	8639401	3.2	8639401	2.5	8639401	23	1.0	8639401		
Alkalinity (Total as CaCO3)	mg/L	590	8639372	120	8639147	89	8639147	230	1.0	8639372		
Dissolved Chloride (Cl-)	mg/L	10	8639391	<1.0	8639391	<1.0	8639391	44	1.0	8639391		
Nitrite (N)	mg/L	<0.010	8639142	<0.010	8639142	<0.010	8639142	<0.010	0.010	8639142		
Nitrate (N)	mg/L	<0.10	8639142	<0.10	8639142	<0.10	8639142	0.59	0.10	8639142		
Nitrate + Nitrite (N)	Nitrate + Nitrite (N) mg/L <0.10 8639142 <0.10 8639142 <0.10 8639142 0.59 0.10 8639142											
RDL = Reportable Detection Lir	nit											
QC Batch – Quality Control Bat	UI											

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		VRD168							
Someling Data		2023/04/26							
Sampling Date		10:40							
COC Number		928793-01-01							
	UNITS	SW1	RDL	QC Batch					
Calculated Parameters									
Hardness (CaCO3)	mg/L	1.3	1.0	8634921					
Inorganics									
Total Ammonia-N	mg/L	<0.050	0.050	8641475					
Total BOD	mg/L	<2	2	8636708					
Total Dissolved Solids	mg/L	15	10	8640116					
Total Kjeldahl Nitrogen (TKN)	mg/L	0.36	0.10	8643235					
Total Phosphorus	mg/L	0.031	0.004	8642934					
Dissolved Sulphate (SO4)	mg/L	3.1	1.0	8639401					
Alkalinity (Total as CaCO3)	mg/L	<1.0	1.0	8639147					
Dissolved Chloride (Cl-)	mg/L	<1.0	1.0	8639391					
Nitrite (N)	mg/L	<0.010	0.010	8639142					
Nitrate (N)	mg/L	<0.10	0.10	8639142					
Nitrate + Nitrite (N)	mg/L	<0.10	0.10	8639142					
RDL = Reportable Detection Li	nit								
QC Batch = Quality Control Batch									

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		VRD164	VRD165	VRD166	VRD167		
Sampling Data		2023/04/26	2023/04/26	2023/04/26	2023/04/26		
Sampling Date		09:30	10:05	10:30	11:00		
COC Number		928793-01-01	928793-01-01	928793-01-01	928793-01-01		
	UNITS	MW1	MW2	MW3	MW4	RDL	QC Batch
Metals							
Dissolved Arsenic (As)	ug/L	7.8	<1.0	<1.0	1.9	1.0	8641183
Dissolved Barium (Ba)	ug/L	160	37	7.7	99	2.0	8641183
Dissolved Boron (B)	ug/L	730	220	<10	210	10	8641183
Dissolved Cadmium (Cd)	ug/L	<0.090	<0.090	<0.090	<0.090	0.090	8641183
Dissolved Calcium (Ca)	ug/L	170000	43000	27000	130000	200	8641183
Dissolved Chromium (Cr)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	8641183
Dissolved Copper (Cu)	ug/L	2.3	3.6	1.6	13	0.90	8641183
Dissolved Iron (Fe)	ug/L	9700	2400	160	2700	100	8641183
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	<0.50	0.92	0.50	8641183
Dissolved Magnesium (Mg)	ug/L	23000	3900	4700	18000	50	8641183
Dissolved Manganese (Mn)	ug/L	670	130	5.5	2500	2.0	8641183
Dissolved Potassium (K)	ug/L	8000	440	430	7500	200	8641183
Dissolved Sodium (Na)	ug/L	29000	3100	710	55000	100	8641183
Dissolved Zinc (Zn)	ug/L	<5.0	190	<5.0	<5.0	5.0	8641183
RDL = Reportable Detection L	imit	•					

QC Batch = Quality Control Batch

Bureau Veritas ID		VRD168		
Sampling Data		2023/04/26		
Sampling Date		10:40		
COC Number		928793-01-01		
	UNITS	SW1	RDL	QC Batch
Metals				
Total Arsenic (As)	mg/L	0.0012	0.0010	8639951
Total Barium (Ba)	mg/L	<0.0020	0.0020	8639951
Total Boron (B)	mg/L	<0.010	0.010	8639951
Total Cadmium (Cd)	mg/L	<0.000090	0.000090	8639951
Total Chromium (Cr)	mg/L	<0.0050	0.0050	8639951
Total Copper (Cu)	mg/L	0.0018	0.00090	8639951
Total Iron (Fe)	mg/L	0.15	0.10	8639951
Total Lead (Pb)	mg/L	<0.00050	0.00050	8639951
Total Zinc (Zn)	mg/L	0.0089	0.0050	8639951
RDL = Reportable Detection	Limit			
QC Batch = Quality Control B	atch			

TEST SUMMARY

Bureau Veritas ID:	VRD164
Sample ID:	MW1
Matrix:	Water

Collected:	2023/04/26
Received:	2023/04/28

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8639372	N/A	2023/05/03	Kien Tran
Biochemical Oxygen Demand (BOD)	DO	8636708	2023/04/29	2023/05/04	Gurjot Kaur
Chloride by Automated Colourimetry	SKAL	8639391	N/A	2023/05/03	Alina Dobreanu
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8642184	N/A	2023/05/03	Gyulshen Idriz
Hardness (calculated as CaCO3)		8635122	N/A	2023/05/03	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	8641183	N/A	2023/05/03	Nan Raykha
Total Ammonia-N	LACH/NH4	8641475	N/A	2023/05/04	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8639142	N/A	2023/05/02	Chandra Nandlal
Sulphate by Automated Turbidimetry	SKAL	8639401	N/A	2023/05/03	Alina Dobreanu
Total Dissolved Solids	BAL	8640116	2023/05/02	2023/05/03	Razieh Tabesh
Total Kjeldahl Nitrogen in Water	SKAL	8643235	2023/05/03	2023/05/03	Rajni Tyagi
Total Phosphorus (Colourimetric)	SKAL/P	8642934	2023/05/03	2023/05/03	Sachi Patel

Bureau Veritas ID:	VRD164 Dup
Sample ID:	MW1
Matrix:	Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chloride by Automated Colourimetry	SKAL	8639391	N/A	2023/05/03	Alina Dobreanu
Sulphate by Automated Turbidimetry	SKAL	8639401	N/A	2023/05/03	Alina Dobreanu

Bureau Veritas ID:	VRD165
Sample ID:	MW2
Matrix:	Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8639147	N/A	2023/05/06	Kien Tran
Biochemical Oxygen Demand (BOD)	DO	8636711	2023/04/29	2023/05/04	Nusrat Naz
Chloride by Automated Colourimetry	SKAL	8639391	N/A	2023/05/03	Alina Dobreanu
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8642065	N/A	2023/05/03	Gyulshen Idriz
Hardness (calculated as CaCO3)		8635122	N/A	2023/05/03	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	8641183	N/A	2023/05/03	Nan Raykha
Total Ammonia-N	LACH/NH4	8641475	N/A	2023/05/04	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8639142	N/A	2023/05/02	Chandra Nandlal
Sulphate by Automated Turbidimetry	SKAL	8639401	N/A	2023/05/03	Alina Dobreanu
Total Dissolved Solids	BAL	8640116	2023/05/02	2023/05/03	Razieh Tabesh
Total Kjeldahl Nitrogen in Water	SKAL	8643235	2023/05/03	2023/05/03	Rajni Tyagi
Total Phosphorus (Colourimetric)	SKAL/P	8642934	2023/05/03	2023/05/03	Sachi Patel

Page 6 of 14 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Collected: 2023/04/26 Shipped: Received: 2023/04/28

Collected: 2023/04/26

Shipped: Received: 2023/04/28

TEST SUMMARY

Bureau Veritas ID:	VRD166
Sample ID:	MW3
Matrix:	Water

Bureau Veritas ID: Sample ID: Matrix:	VRD166 MW3 Water					Collected: Shipped: Received:	2023/04/26 2023/04/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Alkalinity		AT	8639147	N/A	2023/05/06	Kien Tran	
Biochemical Oxygen Dem	and (BOD)	DO	8636708	2023/04/29	2023/05/04	Gurjot Kau	r
Chloride by Automated C	olourimetry	SKAL	8639391	N/A	2023/05/03	Alina Dobr	eanu
Dissolved Organic Carbon	(DOC)	TOCV/NDIR	8639597	N/A	2023/05/02	Gyulshen I	driz
Hardness (calculated as C	aCO3)		8635122	N/A	2023/05/03	Automated	d Statchk
Dissolved Metals by ICPN	15	ICP/MS	8641183	N/A	2023/05/03	Nan Raykh	а
Total Ammonia-N		LACH/NH4	8641475	N/A	2023/05/04	Prabhjot K	aur
Nitrate & Nitrite as Nitrog	gen in Water	LACH	8639142	N/A	2023/05/02	Chandra N	andlal
Sulphate by Automated T	urbidimetry	SKAL	8639401	N/A	2023/05/03	Alina Dobr	eanu
Total Dissolved Solids		BAL	8640088	2023/05/02	2023/05/03	Razieh Tab	esh
Total Kjeldahl Nitrogen in	Water	SKAL	8643235	2023/05/03	2023/05/03	Rajni Tyagi	i
Total Phosphorus (Colour	imetric)	SKAL/P	8642934	2023/05/03	2023/05/03	Sachi Pate	

Bureau Veritas ID:	VRD166 Dup
Sample ID:	MW3
Matrix:	Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Total Phosphorus (Colourimetric)	SKAL/P	8642934	2023/05/03	2023/05/03	Sachi Patel

Bureau Veritas ID:	VRD167
Sample ID:	MW4
Matrix:	Water

Collected:	2023/04/26
Shipped:	
Received:	2023/04/28

Collected: 2023/04/26

Received: 2023/04/28

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	8639372	N/A	2023/05/03	Kien Tran
Biochemical Oxygen Demand (BOD)	DO	8636708	2023/04/29	2023/05/04	Gurjot Kaur
Chloride by Automated Colourimetry	SKAL	8639391	N/A	2023/05/03	Alina Dobreanu
Dissolved Organic Carbon (DOC)	TOCV/NDIR	8639597	N/A	2023/05/02	Gyulshen Idriz
Hardness (calculated as CaCO3)		8635122	N/A	2023/05/03	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	8641183	N/A	2023/05/03	Nan Raykha
Total Ammonia-N	LACH/NH4	8641475	N/A	2023/05/04	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8639142	N/A	2023/05/02	Chandra Nandlal
Sulphate by Automated Turbidimetry	SKAL	8639401	N/A	2023/05/03	Alina Dobreanu
Total Dissolved Solids	BAL	8640116	2023/05/02	2023/05/03	Razieh Tabesh
Total Kjeldahl Nitrogen in Water	SKAL	8643235	2023/05/03	2023/05/03	Rajni Tyagi
Total Phosphorus (Colourimetric)	SKAL/P	8642934	2023/05/03	2023/05/03	Sachi Patel

Bureau Veritas ID: Sample ID: Matrix:	Bureau Veritas ID: VRD168 Sample ID: SW1 Matrix: Water					Collected: Shipped: Received:	2023/04/26 2023/04/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Alkalinity		AT	8639147	N/A	2023/05/06	Kien Tran	

Page 7 of 14

TEST SUMMARY

Bureau Veritas ID: VRD168 Sample ID: SW1 Matrix: Water Collected: 2023/04/26 Shipped: Received: 2023/04/28

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Biochemical Oxygen Demand (BOD)	DO	8636708	2023/04/29	2023/05/04	Gurjot Kaur
Chloride by Automated Colourimetry	SKAL	8639391	N/A	2023/05/03	Alina Dobreanu
Hardness (calculated as CaCO3)		8634921	N/A	2023/05/03	Automated Statchk
Total Metals Analysis by ICPMS	ICP/MS	8639951	2023/05/01	2023/05/02	Prempal Bhatti
Total Ammonia-N	LACH/NH4	8641475	N/A	2023/05/04	Prabhjot Kaur
Nitrate & Nitrite as Nitrogen in Water	LACH	8639142	N/A	2023/05/02	Chandra Nandlal
Sulphate by Automated Turbidimetry	SKAL	8639401	N/A	2023/05/03	Alina Dobreanu
Total Dissolved Solids	BAL	8640116	2023/05/02	2023/05/03	Razieh Tabesh
Total Kjeldahl Nitrogen in Water	SKAL	8643235	2023/05/03	2023/05/03	Rajni Tyagi
Total Phosphorus (Colourimetric)	SKAL/P	8642934	2023/05/03	2023/05/03	Sachi Patel

GENERAL COMMENTS

Each te	emperature is the a	verage of up to t	hree cooler temperatures taken at receipt			
	Package 1	2.3°C]			
Revised Report [2024/01/09]:Sample(s) ID revised as per client. Revised Report [2024/04/09]:Sample(s) ID revised as per client.						

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

Int Cir. Type Parameter Date Analyzed Value Value <th>QA/C</th> <th>2C</th> <th></th> <th></th> <th></th> <th></th> <th>_</th> <th></th> <th></th>	QA/C	2C					_		
Base AU Lub Automation Iotal BOD ZUZ2/05/04 Space mg/L 8636708 GU Nethod Blank Total BOD 2023/05/04 AC mg/L 8636708 GU NPD Total BOD 2023/05/04 AC mg/L 8636711 NNA Method Blank Total BOD 2023/05/02 108 % 80 120 8636711 NNA Method Blank Total BOD 2023/05/02 108 % 80 120 863714 NNA Method Blank Nitrite (N) 2023/05/02 107 % 80 120 8639147 KT Method Blank Nitrite (N) 2023/05/02 -0.10 mg/L 80 120 8639147 KT Splated Blank Allainthy (Total as CACO3) 2023/05/02 -0.10 % 80 120 8639147 KT Method Blank Allainthy (Total as CACO3) 2023/05/06 1.00 % 80 120 8639147 KT	Batc	h Init	QCType	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Bask/00 Gul Method Blank Iotal BOD 2023/05/04 AC % 30 8636706 GUI HPD Total BOD 2023/05/04 AC % 30 8636711 NNA AC Standard Total BOD 2023/05/04 4.8 % 30 8636711 NNA MPD Total BOD 2023/05/02 108 % 80 120 8639142 C.N. Spiked Blank Nitrate (N) 2023/05/02 -0.010 mg/L 8639142 C.N. Method Blank Nitrate (N) 2023/05/02 -0.010 mg/L 8639142 C.N. Pethod Blank Allanithy (Total as CaC03) 2023/05/06 1.00 % 8.5115 8639147 VT Spiked Blank Allanithy (Total as CaC03) 2023/05/05 2.10 mg/L 8639147 VT Spiked Blank Allanithy (Total as CaC03) 2023/05/03 1.0 % 20 8639147 VT Spiked Blank Allanithy (Total as CaC03) 2023/05/03 1.0	8636	/08 GUJ	QC Standard	Total BOD	2023/05/04		94	%	80 - 120
Base AVB COU IORE INDUC ZUZZ/05/04 NU The AD S0 120 8636711 NNA AC Standard Total BOD Z0ZZ/05/04 4.2 mg/L 8636711 NNA Merbo Blank Total BOD Z0ZZ/05/02 108 % 80 120 863912 C.N. Mark Splee Nitrite (N) Z0ZZ/05/02 107 % 80 120 8639142 C.N. Mark Splee Nitrite (N) Z0ZZ/05/02 20.7 % 80 120 8639147 KIT Spleed Blank Nitrite (N) Z0ZZ/05/02 -0.0 mg/L 8639147 KIT Spleed Blank Alkalinity (Total as CAC3) Z0Z2/05/06 -1.0 mg/L 8639147 KIT Spleed Blank Alkalinity (Total as CAC3) Z0Z2/05/06 -1.0 mg/L 8639147 KIT Merbod Blank Alkalinity (Total as CAC3) Z0Z2/05/03 -1.0 mg/L 8639147 KIT Merbod Blank Alkalinity (Total as CAC3	8636	/08 GUJ	Method Blank	Total BOD	2023/05/04	<2		mg/L	20
Base/11 NNA LLS standard Total BOD ZUZ2/05/04 -2. mg/L 8636711 NNA NPD Total BOD 2023/05/04 -2. mg/L 8636711 NNA NPD Total BOD 2023/05/02 108 % 80 - 120 8539142 C.N. Matrix Spike Nitrite (N) 2023/05/02 92 % 80 - 120 8539142 C.N. Spiked Blank Nitrite (N) 2023/05/02 -0.0 mg/L 8539142 C.N. Method Blank Nitrite (N) 2023/05/02 -0.0 mg/L 8539147 KTT Spiked Blank Allainity (Total as CaCO3) 2023/05/06 1.0 mg/L 8539147 KTT PRD Allainity (Total as CaCO3) 2023/05/03 100 % 85 - 115 8539147 KTT PRD Allainity (Total as CaCO3) 2023/05/03 -1.0 mg/L 8639171 KTT PRD Allainity (Total as CaCO3) 2023/05/03 -1.0 mg/L	8636	/08 GUJ	RPD	Total BOD	2023/05/04	NC	05	%	30
Bask/L1 NNA Method Blank Total BOD 2024/05/04 4.8 % 30 B635121 NNA Method Blank Nitrite (N) 2023/05/02 100 % 80 100 B639122 C_N Spiked Blank Nitrite (N) 2023/05/02 107 % 80 120 B639142 C_N Spiked Blank Nitrite (N) 2023/05/02 -0.10 mg/L B639147 KT Spiked Blank Nitrite (N) 2023/05/02 -0.10 mg/L B639147 KT Spiked Blank Alkalinity (Total as CACO3) 2023/05/05 <1.0	8636	/11 NNA	QC Standard	Total BOD	2023/05/04		95	%	80 - 120
Be3FJ12 NNA NPD Iotal BOD 202/10/0/04 4.8 % 30 Be3J12 C. Matrix Spike Nitrate (N) 2023/05/02 108 % 80 - 120 Be3J12 C.N Spiked Blank Nitrate (N) 2023/05/02 92 % 80 - 120 Be3J12 C.N Method Blank Nitrate (N) 2023/05/02 40.010 mg/L Be3J142 C.N Method Blank Alkalinity (Total as CaCO3) 2023/05/06 100 % 85 - 115 Be3J147 KT Spiked Blank Alkalinity (Total as CaCO3) 2023/05/06 1.0 mg/L Be3J147 KT RPD Akalinity (Total as CaCO3) 2023/05/03 1.0 % 20 Be3J142 KT Spiked Blank Alkalinity (Total as CaCO3) 2023/05/03 1.0 % 20 Be3J143 KT RPD Alkalinity (Total as CaCO3) 2023/05/03 1.0 mg/L Be3J143 KT Spiked Blank Alkalinity (Total as CaCO3)<	8636	/11 NNA	Method Blank	Total BOD	2023/05/04	<2		mg/L	
B639142 C.M. Matrix Spike Nitrite (N) 2023/05/02 108 % 80 120 B639142 C.M. Spiked Blank Nitrite (N) 2023/05/02 107 % 80 120 B639142 C.M. Method Blank Nitrite (N) 2023/05/02 0.010 mg/L B639142 C.M. Spiked Blank Nitrite (N) 2023/05/02 NC % 80 120 B639147 KT Spiked Blank Aklaininy (Total as CaC03) 2023/05/06 -1.0 mg/L 8639147 KT RPD Aklaininy (Total as CaC03) 2023/05/06 -1.0 mg/L 8639372 KT Spiked Blank Aklaininy (Total as CaC03) 2023/05/03 -1.0 mg/L 8639331 NB Namp/L 863931 NB Namp/L 863911 NB 86391110 NB	8636	/11 NNA	RPD	Iotal BOD	2023/05/04	4.8		%	30
Instrate (N) 2023/05/02 92 % 80 - 120 6639142 C_N Spiked Blank Nitrate (N) 2023/05/02 -0.0 mg/L 6639142 C_N Method Blank Nitrate (N) 2023/05/02 -0.10 mg/L 6639147 KIT Spiked Blank Atkalinity (Total as CaC03) 2023/05/02 NC % 80 - 120 6639147 KIT Spiked Blank Atkalinity (Total as CaC03) 2023/05/06 -1.0 % 85 - 115 6639172 KIT Method Blank Atkalinity (Total as CaC03) 2023/05/06 -1.0 % 85 - 115 6639312 KIT Method Blank Atkalinity (Total as CaC03) 2023/05/03 -0.1 mg/L 6639391 ADB Matrix Spike (VRD164-01) 2023/05/03 -0 mg/L 6639391 ADB Matrix Spike (VRD164-01) Dissolved Choride (C) 2023/05/03 -0 mg/L 6639391 ADB Matrix Spike (VRD164-01) Dissolved Suphate (SO4) 2023/05/03 -0 mg/	86393	142 C_N	Matrix Spike	Nitrite (N)	2023/05/02		108	%	80 - 120
8639142 C_N Spiked Blank Nitrite (N) 2023/05/02 92 % 80 - 120 8639142 C_N Method Blank Nitrite (N) 2023/05/02 <0.010				Nitrate (N)	2023/05/02		92	%	80 - 120
Bit Samuel Control Nitrate (N) 2023/05/02 0.010 mg/L Bit Samuel Control Nitrate (N) 2023/05/02 0.010 mg/L Bit Samuel Control Nitrate (N) 2023/05/02 0.010 mg/L Bit Samuel Control Nitrate (N) 2023/05/06 1.00 % 85 - 115 Bit Samuel Control Akalinity (Total as CaCO3) 2023/05/06 2.00 mg/L 86 - 20 Bit Samuel Control Akalinity (Total as CaCO3) 2023/05/06 2.01 mg/L 86 - 20 Bit Samuel Control Akalinity (Total as CaCO3) 2023/05/03 -1.00 % 85 - 115 Bit Samuel Control Akalinity (Total as CaCO3) 2023/05/03 -0.0 mg/L Bit Samuel Control Akalinity (Total as CaCO3) 2023/05/03 -0.0 mg/L Bit Samuel Control Akalinity (Total as CaCO3) 2023/05/03 -0.0 mg/L Bit Samuel Control 2023/05/03 -0.0 mg/L Bit Samuel Control -0.0 Bit Samuel Samuel Control 2020/05/03 -0.0	86393	142 C_N	Spiked Blank	Nitrite (N)	2023/05/02		107	%	80 - 120
863914 C,N Method Blank Nitrite (N) 2023/05/02 <0.010				Nitrate (N)	2023/05/02		92	%	80 - 120
Bestant Nitrate (N) 2023/05/02 NC % 20 8639147 KIT Spiked Blank Alkalinity (Total as CaCO3) 2023/05/06 100 % 85 115 8639147 KIT Spiked Blank Alkalinity (Total as CaCO3) 2023/05/06 2.0 mg/L 8639127 KIT Spiked Blank Alkalinity (Total as CaCO3) 2023/05/03 1.0 mg/L 8639327 KIT Method Blank Alkalinity (Total as CaCO3) 2023/05/03 1.0 mg/L 8639391 ADB Bolt Adminity (Total as CaCO3) 2023/05/03 1.0 mg/L 8639391 ADB Matrix Spike (VPD164-01) Disolved Chloride (C1-) 2023/05/03 1.6 % 20 8639401 ADB Method Blank Disolved Sulphate (S04) 2023/05/03 1.0 mg/L 86 8639401 ADB RPD (VRD164-01) Disolved Sulphate (S04) 2023/05/03 1.0 mg/L 86 8639597 GID Matrix Spike (VRD164-01) <t< td=""><td>86393</td><td>142 C_N</td><td>Method Blank</td><td>Nitrite (N)</td><td>2023/05/02</td><td><0.010</td><td></td><td>mg/L</td><td></td></t<>	86393	142 C_N	Method Blank	Nitrite (N)	2023/05/02	<0.010		mg/L	
863914 C.N RPD Nitrate (N) 2023/05/06 NC % 20 8639147 KIT Spiked Blank Alkelinity (Total as CaC03) 2023/05/06 c.1.0 mg/L 8639147 KIT RPD Alkelinity (Total as CaC03) 2023/05/06 c.1.0 mg/L 8639372 KIT Spiked Blank Alkelinity (Total as CaC03) 2023/05/03 c.1.0 mg/L 8639372 KIT Spiked Blank Alkelinity (Total as CaC03) 2023/05/03 c.1.0 mg/L 8639391 ADB Method Blank Dissolved Chloride (Cl-) 2023/05/03 c.1.0 mg/L 8639391 ADB Method Blank Dissolved Chloride (Cl-) 2023/05/03 c.1.0 mg/L 8639391 ADB Method Blank Dissolved Chloride (Cl-) 2023/05/03 c.1.0 mg/L 8639401 ADB Method Blank Dissolved Sulphate (S04) 2023/05/03 c.1.0 mg/L 8639401 ADB RPD (VRD164-01] Dissolved Sulphate (S04) 2023/05/02				Nitrate (N)	2023/05/02	<0.10		mg/L	
6639147 KIT Spiked Blank Alkalinity (Total as CaCO3) 2023/05/06 <1.0	86393	142 C_N	RPD	Nitrate (N)	2023/05/02	NC		%	20
B653147 KIT Method Blank Alkalinity (Total as CaC03) 2023/05/06 <1.0 mg/L B633147 KIT RPD Alkalinity (Total as CaC03) 2023/05/06 2.3 % 20 B633372 KIT Spiked Blank Alkalinity (Total as CaC03) 2023/05/03 <1.0	86393	147 KIT	Spiked Blank	Alkalinity (Total as CaCO3)	2023/05/06		100	%	85 - 115
B633917 KIT RPD Alkalinity (Total as CaCO3) 2022/05/03 2.3 % 20 B633972 KIT Spiked Blank Alkalinity (Total as CaCO3) 2023/05/03 -1.0 mg/L B633972 KIT Method Blank Alkalinity (Total as CaCO3) 2023/05/03 0.15 % 20 B633931 ADB Matrix Spike (WD164-01) Dissolved Chioride (CI-) 2023/05/03 .08 % 80 - 120 B633931 ADB Method Blank Dissolved Chioride (CI-) 2023/05/03 .16 % 20 B633931 ADB Method Blank Dissolved Chioride (CI-) 2023/05/03 .16 % 20 B633901 ADB Method Blank Dissolved Sulphate (SO4) 2023/05/03 .10 % 80 - 120 B63401 ADB Spiked Blank Dissolved Sulphate (SO4) 2023/05/03 .1.0 mg/L 20 B63401 ADB Method Blank Dissolved Organic Carbon 2023/05/02 .94 % 80 - 120	86393	147 KIT	Method Blank	Alkalinity (Total as CaCO3)	2023/05/06	<1.0		mg/L	
B633972 KIT Spiked Blank Alkalinity (Total as CaCO3) 2022/05/03 1.00 % 85-11 B633372 KIT RPD Alkalinity (Total as CaCO3) 2023/05/03 0.15 % 20 B633331 ADB Matrix Spike (VRD164-01) Dissolved Chioride (CI-) 2023/05/03 4.0 98 % 80 - 120 B633331 ADB Spiked Blank Dissolved Chioride (CI-) 2023/05/03 4.0 mg/L B633331 ADB RPD (VRD164-01) Dissolved Chioride (CI-) 2023/05/03 4.0 mg/L B633931 ADB Matrix Spike (VRD164-01) Dissolved Sulphate (SO4) 2023/05/03 1.0 mg/L B633901 ADB Matrix Spike (VRD164-01) Dissolved Sulphate (SO4) 2023/05/03 -1.0 mg/L B633907 GID Matrix Spike Dissolved Sulphate (SO4) 2023/05/03 -1.0 mg/L B633907 GID Matrix Spike Dissolved Organic Carbon 2023/05/02 94 % 80 - 120 B633957 </td <td>86393</td> <td>147 KIT</td> <td>RPD</td> <td>Alkalinity (Total as CaCO3)</td> <td>2023/05/06</td> <td>2.3</td> <td></td> <td>%</td> <td>20</td>	86393	147 KIT	RPD	Alkalinity (Total as CaCO3)	2023/05/06	2.3		%	20
B633972 KIT Method Blank Alkalinity (Total as CaCO3) 2022/05/03 <1.0 mg/L B633973 KIT ReD Alkalinity (Total as CaCO3) 2023/05/03 0.15 % 20 B633931 ADB Spiked Blank Dissolved Choride (CI-) 2023/05/03 98 % 80 - 120 B633931 ADB Method Blank Dissolved Choride (CI-) 2023/05/03 1.0 mg/L B633931 ADB Method Blank Dissolved Choride (CI-) 2023/05/03 1.0 % 20 B633941 ADB Method Blank Dissolved Sulphate (SO4) 2023/05/03 1.0 % 80 - 120 B634001 ADB RPI (PKD164-01) Dissolved Sulphate (SO4) 2023/05/03 1.0 mg/L 20 B633997 GID Method Blank Dissolved Organic Carbon 2023/05/02 9 % 80 - 120 B633997 GID Method Blank Dissolved Organic Carbon 2023/05/02 1.0 mg/L 20 B6339957 <td>86393</td> <td>372 KIT</td> <td>Spiked Blank</td> <td>Alkalinity (Total as CaCO3)</td> <td>2023/05/03</td> <td></td> <td>100</td> <td>%</td> <td>85 - 115</td>	86393	372 KIT	Spiked Blank	Alkalinity (Total as CaCO3)	2023/05/03		100	%	85 - 115
8633972 KIT RPD Alkalinity (Total as CaC03) 2023/05/03 0.15 % 20 8633931 ADB Matrix Spike (VRD164-01) Dissolved Chloride (Cl-) 2023/05/03 98 % 80 - 120 8633931 ADB Method Blank Dissolved Chloride (Cl-) 2023/05/03 4.0 mg/L 8633931 ADB RPD (VRD164-01) Dissolved Chloride (Cl-) 2023/05/03 1.6 % 20 86339401 ADB Matrix Spike (VRD164-01) Dissolved Sulphate (SO4) 2023/05/03 -100 % 80 - 120 8639401 ADB Matrix Spike (VRD164-01) Dissolved Sulphate (SO4) 2023/05/03 -7.2 % 20 8639401 ADB RPD (VRD164-01) Dissolved Organic Carbon 2023/05/02 94 % 80 - 120 8639957 GID Matrix Spike Dissolved Organic Carbon 2023/05/02 1.9 % 20 8639597 GID Method Blank Dissolved Organic Carbon 2023/05/02 1.00 % <	86393	372 KIT	Method Blank	Alkalinity (Total as CaCO3)	2023/05/03	<1.0		mg/L	
6639391 ADB Matrix Spike (VRD164-01) Dissolved Chloride (CI-) 2023/05/03 99 % 80 - 120 6639391 ADB Spiked Blank Dissolved Chloride (CI-) 2023/05/03 <1.0	86393	372 KIT	RPD	Alkalinity (Total as CaCO3)	2023/05/03	0.15		%	20
8639391 ADB Spiked Blank Dissolved Chloride (Cl-) 2023/05/03 -1.0 mg/L 8639391 ADB Rethod Blank Dissolved Chloride (Cl-) 2023/05/03 1.6 % 20 8639301 ADB RPD (VRD164-01) Dissolved Sulphate (SO4) 2023/05/03 1.6 % 80 75 - 125 8639401 ADB Spiked Blank Dissolved Sulphate (SO4) 2023/05/03 <1.0	86393	391 ADB	Matrix Spike [VRD164-01]	Dissolved Chloride (Cl-)	2023/05/03		99	%	80 - 120
B633931 ADB Method Blank Dissolved Chloride (Cl-) 2023/05/03 <1.0 mg/L 863931 ADB RPD [VRD164-01] Dissolved Chloride (Cl-) 2023/05/03 1.6 % 20 8639401 ADB Spliked Blank Dissolved Sulphate (SO4) 2023/05/03 100 % 80 -120 8639401 ADB PRP (VRD164-01) Dissolved Sulphate (SO4) 2023/05/03 7.2 % 20 8639401 ADB RPD (VRD164-01) Dissolved Sulphate (SO4) 2023/05/03 7.2 % 20 863957 GID Matrix Spike Dissolved Organic Carbon 2023/05/02 94 % 80 -120 863957 GID PPD Dissolved Organic Carbon 2023/05/02 1.9 % 20 863957 GID RPD Dissolved Organic Carbon 2023/05/02 1.00 % 80 -120 863957 GID RPD Dissolved Organic Carbon 2023/05/02 1.00 % 80 -120 7014 Baron (B)<	86393	391 ADB	Spiked Blank	Dissolved Chloride (Cl-)	2023/05/03		98	%	80 - 120
8633931 ADB RPD [VRD164-01] Dissolved Choride (CI-) 2023/05/03 1.6 % 20 8639401 ADB Matrix Spike [VRD164-01] Dissolved Sulphate (SO4) 2023/05/03 100 % 80 - 120 8639401 ADB Method Blank Dissolved Sulphate (SO4) 2023/05/03 <1.0	86393	391 ADB	Method Blank	Dissolved Chloride (Cl-)	2023/05/03	<1.0		mg/L	
8639401 ADB Matrix Spike (NRD164-01) Dissolved Sulphate (SO4) 2023/05/03 98 % 75-125 8639401 ADB Spiked Blank Dissolved Sulphate (SO4) 2023/05/03 <1.0	86393	391 ADB	RPD [VRD164-01]	Dissolved Chloride (Cl-)	2023/05/03	1.6		%	20
8639401 ADB Spiked Blank Dissolved Sulphate (SO4) 2023/05/03 <1.0 % 80 - 120 8639401 ADB Method Blank Dissolved Sulphate (SO4) 2023/05/03 <1.0	86394	401 ADB	Matrix Spike [VRD164-01]	Dissolved Sulphate (SO4)	2023/05/03		98	%	75 - 125
8639401 ADB Method Blank Dissolved Sulphate (SO4) 2023/05/03 <1.0 mg/L 8639401 ADB RPD [VRD164-01] Dissolved Sulphate (SO4) 2023/05/02 7.2 % 20 8639597 GID Matrix Spike Dissolved Organic Carbon 2023/05/02 99 % 80 - 120 8639597 GID Method Blank Dissolved Organic Carbon 2023/05/02 <0.40	86394	401 ADB	Spiked Blank	Dissolved Sulphate (SO4)	2023/05/03		100	%	80 - 120
8639401 ADB RPD [VRD164-01] Dissolved Organic Carbon 2023/05/02 94 % 20 8639597 GID Matrix Spike Dissolved Organic Carbon 2023/05/02 94 % 80 - 120 8639597 GID Method Blank Dissolved Organic Carbon 2023/05/02 <0.40	86394	401 ADB	Method Blank	Dissolved Sulphate (SO4)	2023/05/03	<1.0		mg/L	
8639597 GID Matrix Spike Dissolved Organic Carbon 2023/05/02 94 % 80 - 120 8639597 GID Spiked Blank Dissolved Organic Carbon 2023/05/02 <0.40	86394	401 ADB	RPD [VRD164-01]	Dissolved Sulphate (SO4)	2023/05/03	7.2		%	20
8639597 GID Spiked Blank Dissolved Organic Carbon 2023/05/02 <0.40 mg/L 8639597 GID Method Blank Dissolved Organic Carbon 2023/05/02 <0.40	86395	597 GID	Matrix Spike	Dissolved Organic Carbon	2023/05/02		94	%	80 - 120
8639597 GID Method Blank Dissolved Organic Carbon 2023/05/02 <0.40 mg/L 8639597 GID RPD Dissolved Organic Carbon 2023/05/02 1.9 % 20 8639951 PBA Matrix Spike Total Arsenic (As) 2023/05/02 100 % 80 - 120 Total Barium (Ba) 2023/05/02 100 % 80 - 120 Total Barium (Ba) 2023/05/02 97 % 80 - 120 Total Cadmium (Cd) 2023/05/02 97 % 80 - 120 Total Comport (Cu) 2023/05/02 98 % 80 - 120 Total Copper (Cu) 2023/05/02 98 % 80 - 120 Total Copper (Cu) 2023/05/02 99 % 80 - 120 Total Lead (Pb) 2023/05/02 90 % 80 - 120 Total Arsenic (As) 2023/05/02 94 % 80 - 120 Total Barium (Ba) 2023/05/02 93 % 80 - 120 Total Barium (Ba) 2023/05/02 </td <td>86395</td> <td>597 GID</td> <td>Spiked Blank</td> <td>Dissolved Organic Carbon</td> <td>2023/05/02</td> <td></td> <td>99</td> <td>%</td> <td>80 - 120</td>	86395	597 GID	Spiked Blank	Dissolved Organic Carbon	2023/05/02		99	%	80 - 120
8639597 GID RPD Dissolved Organic Carbon 2023/05/02 1.9 % 20 8639951 PBA Matrix Spike Total Arsenic (As) 2023/05/02 100 % 80 - 120 Total Barium (Ba) 2023/05/02 100 % 80 - 120 Total Borium (Cd) 2023/05/02 97 % 80 - 120 Total Carbinum (Cd) 2023/05/02 98 % 80 - 120 Total Commium (Cr) 2023/05/02 98 % 80 - 120 Total Corper (Cu) 2023/05/02 98 % 80 - 120 Total Copper (Cu) 2023/05/02 98 % 80 - 120 Total Iron (Fe) 2023/05/02 99 % 80 - 120 Total Zorn) 2023/05/02 90 % 80 - 120 Total Zorn (Fe) 2023/05/02 94 % 80 - 120 Total Zorn (Rb) 2023/05/02 96 % 80 - 120 Total Zorn (Rb) 2023/05/02 93 % 80 - 120 </td <td>86395</td> <td>597 GID</td> <td>Method Blank</td> <td>Dissolved Organic Carbon</td> <td>2023/05/02</td> <td><0.40</td> <td></td> <td>mg/L</td> <td></td>	86395	597 GID	Method Blank	Dissolved Organic Carbon	2023/05/02	<0.40		mg/L	
8639951 PBA Matrix Spike Total Arsenic (As) 2023/05/02 102 % 80 - 120 Total Barium (Ba) 2023/05/02 100 % 80 - 120 Total Boron (B) 2023/05/02 97 % 80 - 120 Total Cadmium (Cd) 2023/05/02 98 % 80 - 120 Total Copper (Cu) 2023/05/02 98 % 80 - 120 Total Copper (Cu) 2023/05/02 98 % 80 - 120 Total Copper (Cu) 2023/05/02 98 % 80 - 120 Total Icad (Pb) 2023/05/02 99 % 80 - 120 Total Lead (Pb) 2023/05/02 90 % 80 - 120 Total Icad (Pb) 2023/05/02 90 % 80 - 120 Total Barium (Ba) 2023/05/02 93 % 80 - 120 Total Barium (Ba) 2023/05/02 93 % 80 - 120 Total Copper (Cu) 2023/05/02 93 % 80 - 120 Total Copper (Cu) 2023/	86395	597 GID	RPD	Dissolved Organic Carbon	2023/05/02	1.9		%	20
Results Total Barium (Ba) 2023/05/02 100 % 80 - 120 Total Boron (B) 2023/05/02 97 % 80 - 120 Total Cadmium (Cd) 2023/05/02 95 % 80 - 120 Total Chromium (Cr) 2023/05/02 98 % 80 - 120 Total Chromium (Cr) 2023/05/02 98 % 80 - 120 Total Copper (Cu) 2023/05/02 99 % 80 - 120 Total Copper (Cu) 2023/05/02 90 % 80 - 120 Total Lead (Pb) 2023/05/02 90 % 80 - 120 Total Lead (Pb) 2023/05/02 90 % 80 - 120 Total Barium (Ba) 2023/05/02 94 % 80 - 120 Total Arsenic (As) 2023/05/02 93 % 80 - 120 Total Barium (Ba) 2023/05/02 93 % 80 - 120 Total Arsenic (As) 2023/05/02 93 % 80 - 120 Total Comput (Cr) 2023/05/02 95 %<	86399	951 PBA	Matrix Spike	Total Arsenic (As)	2023/05/02		102	%	80 - 120
Reference Total Boron (B) 2023/05/02 97 % 80 - 120 Total Cadmium (Cd) 2023/05/02 95 % 80 - 120 Total Chromium (Cr) 2023/05/02 98 % 80 - 120 Total Copper (Cu) 2023/05/02 98 % 80 - 120 Total Copper (Cu) 2023/05/02 99 % 80 - 120 Total Lead (Pb) 2023/05/02 90 % 80 - 120 Total Zinc (Zn) 2023/05/02 90 % 80 - 120 Total Zinc (Zn) 2023/05/02 96 % 80 - 120 Total Barium (Ba) 2023/05/02 93 % 80 - 120 Total Boron (B) 2023/05/02 93 % 80 - 120 Total Compium (Cr) 2023/05/02 93 % 80 - 120 Total Cadmium (Cd) 2023/05/02 93 % 80 - 120 Total Chromium (Cr) 2023/05/02 93 % 80 - 120 Total Copper (Cu) 2023/05/02 93 % <td></td> <td></td> <td></td> <td>Total Barium (Ba)</td> <td>2023/05/02</td> <td></td> <td>100</td> <td>%</td> <td>80 - 120</td>				Total Barium (Ba)	2023/05/02		100	%	80 - 120
8639951 PBA Spiked Blank Total Cadmium (Cd) 2023/05/02 95 % 80 - 120 7 total Copper (Cu) 2023/05/02 100 % 80 - 120 7 total Copper (Cu) 2023/05/02 99 % 80 - 120 7 total Copper (Cu) 2023/05/02 99 % 80 - 120 7 total Lead (Pb) 2023/05/02 90 % 80 - 120 7 total Lead (Pb) 2023/05/02 90 % 80 - 120 8639951 PBA Spiked Blank Total Arsenic (As) 2023/05/02 93 % 80 - 120 7 total Barium (Ba) 2023/05/02 93 % 80 - 120 7 total Boron (B) 2023/05/02 93 % 80 - 120 7 total Copper (Cu) 2023/05/02 93 % 80 - 120 7 total Copper (Cu) 2023/05/02 95 % 80 - 120 7 total Copper (Cu) 2023/05/02 93 % 80 - 120 7 total Copper (Cu) 2023/05/02 93 % <td></td> <td></td> <td></td> <td>Total Boron (B)</td> <td>2023/05/02</td> <td></td> <td>97</td> <td>%</td> <td>80 - 120</td>				Total Boron (B)	2023/05/02		97	%	80 - 120
R639951 PBA Spiked Blank Total Chromium (Cr) 2023/05/02 98 % 80 - 120 R639951 PBA Spiked Blank Total Arsenic (As) 2023/05/02 90 % 80 - 120 Total Lead (Pb) 2023/05/02 90 % 80 - 120 8639951 PBA Spiked Blank Total Arsenic (As) 2023/05/02 96 % 80 - 120 Total Barium (Ba) 2023/05/02 96 % 80 - 120 Total Barium (Ba) 2023/05/02 93 % 80 - 120 Total Barium (Cd) 2023/05/02 93 % 80 - 120 Total Copper (Cu) 2023/05/02 93 % 80 - 120 Total Copper (Cu) 2023/05/02 95 % 80 - 120 Total Iron (Fe) 2023/05/02 93 % 80 - 120 Total Iron (Fe) 2023/05/02 93 % 80 - 120 Total Iron (Fe) 2023/05/02 93 % 80 - 120 Total Lead (Pb) 20				Total Cadmium (Cd)	2023/05/02		95	%	80 - 120
R639951 PBA Spiked Blank Total Copper (Cu) 2023/05/02 99 % 80 - 120 R639951 PBA Spiked Blank Total Arsenic (As) 2023/05/02 96 % 80 - 120 R639951 PBA Spiked Blank Total Arsenic (As) 2023/05/02 96 % 80 - 120 R639951 PBA Spiked Blank Total Arsenic (As) 2023/05/02 93 % 80 - 120 R639951 PBA Spiked Blank Total Arsenic (As) 2023/05/02 93 % 80 - 120 R639951 PBA Spiked Blank Total Arsenic (As) 2023/05/02 93 % 80 - 120 R639951 PBA Method Blank Total Copper (Cu) 2023/05/02 93 % 80 - 120 R639951 PBA Method Blank Total Arsenic (As) 2023/05/02 93 % 80 - 120 R639951 PBA Method Blank Total Arsenic (As) 2023/05/02 93 % 80 - 120 R639951 PBA Method Blank Total Arsenic (As) 2023/05/02 99 %				Total Chromium (Cr)	2023/05/02		98	%	80 - 120
8639951 PBA Spiked Blank Total Lead (Pb) 2023/05/02 90 % 80 - 120 8639951 PBA Spiked Blank Total Arsenic (As) 2023/05/02 94 % 80 - 120 70tal Zinc (Zn) 2023/05/02 94 % 80 - 120 8639951 PBA Spiked Blank Total Arsenic (As) 2023/05/02 96 % 80 - 120 Total Barium (Ba) 2023/05/02 93 % 80 - 120 Total Boron (B) 2023/05/02 93 % 80 - 120 Total Cadmium (Cd) 2023/05/02 95 % 80 - 120 Total Copper (Cu) 2023/05/02 95 % 80 - 120 Total Lead (Pb) 2023/05/02 93 % 80 - 120 Total Copper (Cu) 2023/05/02 93 % 80 - 120 Total Lead (Pb) 2023/05/02 93 % 80 - 120 Total Zinc (Zn) 2023/05/02 93 % 80 - 120 Total Zinc (Zn) 2023/05				Total Copper (Cu)	2023/05/02		100	%	80 - 120
8639951 PBA Spiked Blank Total Lead (Pb) 2023/05/02 90 % 80 - 120 8639951 PBA Spiked Blank Total Arsenic (As) 2023/05/02 96 % 80 - 120 70tal Barium (Ba) 2023/05/02 93 % 80 - 120 70tal Barium (Ba) 2023/05/02 93 % 80 - 120 70tal Barium (Ba) 2023/05/02 93 % 80 - 120 70tal Boron (B) 2023/05/02 93 % 80 - 120 70tal Codmium (Cd) 2023/05/02 95 % 80 - 120 70tal Copper (Cu) 2023/05/02 95 % 80 - 120 70tal Iron (Fe) 2023/05/02 93 % 80 - 120 70tal Lead (Pb) 2023/05/02 93 % 80 - 120 70tal Zinc (Zn) 2023/05/02 93 % 80 - 120 8639951 PBA Method Blank Total Arsenic (As) 2023/05/02 <0.0010				Total Iron (Fe)	2023/05/02		99	%	80 - 120
8639951 PBA Spiked Blank Total Zinc (Zn) 2023/05/02 94 % 80 - 120 8639951 PBA Spiked Blank Total Arsenic (As) 2023/05/02 96 % 80 - 120 Total Barium (Ba) 2023/05/02 93 % 80 - 120 Total Boron (B) 2023/05/02 93 % 80 - 120 Total Cadmium (Cd) 2023/05/02 95 % 80 - 120 Total Copper (Cu) 2023/05/02 95 % 80 - 120 Total Copper (Cu) 2023/05/02 95 % 80 - 120 Total Copper (Cu) 2023/05/02 95 % 80 - 120 Total Iron (Fe) 2023/05/02 93 % 80 - 120 Total Lead (Pb) 2023/05/02 93 % 80 - 120 Total Zinc (Zn) 2023/05/02 93 % 80 - 120 Total Lead (Pb) 2023/05/02 93 % 80 - 120 Total Zinc (Zn) 2023/05/02 99 % 80 - 120				Total Lead (Pb)	2023/05/02		90	%	80 - 120
8639951 PBA Spiked Blank Total Arsenic (As) 2023/05/02 96 % 80 - 120 Total Barium (Ba) 2023/05/02 93 % 80 - 120 Total Boron (B) 2023/05/02 93 % 80 - 120 Total Cadmium (Cd) 2023/05/02 95 % 80 - 120 Total Cadmium (Cd) 2023/05/02 95 % 80 - 120 Total Chromium (Cr) 2023/05/02 92 % 80 - 120 Total Copper (Cu) 2023/05/02 95 % 80 - 120 Total Copper (Cu) 2023/05/02 95 % 80 - 120 Total Iron (Fe) 2023/05/02 93 % 80 - 120 Total Lead (Pb) 2023/05/02 93 % 80 - 120 Total Zinc (Zn) 2023/05/02 93 % 80 - 120 8639951 PBA Method Blank Total Arsenic (As) 2023/05/02 99 % 80 - 120 Total Barium (Ba) 2023/05/02 <0.0010				Total Zinc (Zn)	2023/05/02		94	%	80 - 120
Total Barium (Ba) 2023/05/02 93 % 80 - 120 Total Boron (B) 2023/05/02 93 % 80 - 120 Total Cadmium (Cd) 2023/05/02 95 % 80 - 120 Total Cadmium (Cr) 2023/05/02 92 % 80 - 120 Total Copper (Cu) 2023/05/02 95 % 80 - 120 Total Copper (Cu) 2023/05/02 95 % 80 - 120 Total Iron (Fe) 2023/05/02 93 % 80 - 120 Total Lead (Pb) 2023/05/02 93 % 80 - 120 Total Zinc (Zn) 2023/05/02 93 % 80 - 120 8639951 PBA Method Blank Total Arsenic (As) 2023/05/02 99 % 80 - 120 8639951 PBA Method Blank Total Arsenic (As) 2023/05/02 <0.0010	86399	951 PBA	Spiked Blank	Total Arsenic (As)	2023/05/02		96	%	80 - 120
Total Boron (B) 2023/05/02 93 % 80 - 120 Total Cadmium (Cd) 2023/05/02 95 % 80 - 120 Total Chromium (Cr) 2023/05/02 92 % 80 - 120 Total Copper (Cu) 2023/05/02 95 % 80 - 120 Total Copper (Cu) 2023/05/02 95 % 80 - 120 Total Iron (Fe) 2023/05/02 93 % 80 - 120 Total Lead (Pb) 2023/05/02 93 % 80 - 120 Total Zinc (Zn) 2023/05/02 93 % 80 - 120 8639951 PBA Method Blank Total Arsenic (As) 2023/05/02 <0.0010				Total Barium (Ba)	2023/05/02		93	%	80 - 120
Total Cadmium (Cd) 2023/05/02 95 % 80 - 120 Total Chromium (Cr) 2023/05/02 92 % 80 - 120 Total Copper (Cu) 2023/05/02 95 % 80 - 120 Total Iron (Fe) 2023/05/02 93 % 80 - 120 Total Lead (Pb) 2023/05/02 93 % 80 - 120 Total Zinc (Zn) 2023/05/02 93 % 80 - 120 8639951 PBA Method Blank Total Arsenic (As) 2023/05/02 <0.0010				Total Boron (B)	2023/05/02		93	%	80 - 120
Total Chromium (Cr) 2023/05/02 92 % 80 - 120 Total Copper (Cu) 2023/05/02 95 % 80 - 120 Total Iron (Fe) 2023/05/02 93 % 80 - 120 Total Lead (Pb) 2023/05/02 93 % 80 - 120 Total Zinc (Zn) 2023/05/02 93 % 80 - 120 8639951 PBA Method Blank Total Arsenic (As) 2023/05/02 <0.0010				Total Cadmium (Cd)	2023/05/02		95	%	80 - 120
Total Copper (Cu) 2023/05/02 95 % 80 - 120 Total Iron (Fe) 2023/05/02 93 % 80 - 120 Total Lead (Pb) 2023/05/02 93 % 80 - 120 Total Lead (Pb) 2023/05/02 93 % 80 - 120 Total Zinc (Zn) 2023/05/02 93 % 80 - 120 8639951 PBA Method Blank Total Arsenic (As) 2023/05/02 <0.0010				Total Chromium (Cr)	2023/05/02		92	%	80 - 120
Total Iron (Fe) 2023/05/02 93 % 80 - 120 Total Lead (Pb) 2023/05/02 93 % 80 - 120 Total Zinc (Zn) 2023/05/02 93 % 80 - 120 8639951 PBA Method Blank Total Arsenic (As) 2023/05/02 <0.0010				Total Copper (Cu)	2023/05/02		95	%	80 - 120
Total Lead (Pb) 2023/05/02 93 % 80 - 120 Total Zinc (Zn) 2023/05/02 99 % 80 - 120 8639951 PBA Method Blank Total Arsenic (As) 2023/05/02 <0.0010				Total Iron (Fe)	2023/05/02		93	%	80 - 120
Total Zinc (Zn) 2023/05/02 99 % 80 - 120 8639951 PBA Method Blank Total Arsenic (As) 2023/05/02 <0.0010				Total Lead (Pb)	2023/05/02		93	%	80 - 120
8639951 PBA Method Blank Total Arsenic (As) 2023/05/02 <0.0010 mg/L Total Barium (Ba) 2023/05/02 <0.0020				Total Zinc (Zn)	2023/05/02		99	%	80 - 120
Total Barium (Ba) 2023/05/02 <0.0020 mg/L	86399	951 PBA	Method Blank	Total Arsenic (As)	2023/05/02	<0.0010		mg/L	
				Total Barium (Ba)	2023/05/02	< 0.0020		mg/L	

Page 10 of 14

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC		007						
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			I OTAL BORON (B)	2023/05/02	<0.010		mg/L	
			Total Cadmium (Cd)	2023/05/02	<0.000090		mg/L	
			Total Chromium (Cr)	2023/05/02	<0.0050		mg/L	
			Total Copper (Cu)	2023/05/02	<0.00090		mg/L	
			Total Iron (Fe)	2023/05/02	<0.10		mg/L	
			Total Lead (PD)	2023/05/02	<0.00050		mg/L	
0000054			Total Zinc (Zn)	2023/05/02	<0.0050		mg/L	20
8639951	РВА	RPD	Total Cadmium (Cd)	2023/05/02	NC		%	20
			Total Chromium (Cr)	2023/05/02	NC		%	20
			Total Copper (Cu)	2023/05/02	0.88		%	20
			Total Iron (Fe)	2023/05/02	13		%	20
			Total Lead (Pb)	2023/05/02	NC		%	20
0040000			Total Zinc (Zn)	2023/05/02	8.7	07	%	20
8640088	RIB	QC Standard	Total Dissolved Solids	2023/05/03	10	97	%	N/A
8640088	RIB	Method Blank	Total Dissolved Solids	2023/05/03	<10		mg/L	
8640088	RIB	RPD	Total Dissolved Solids	2023/05/03	3.7	05	%	20
8640116	RIB	QC Standard	Total Dissolved Solids	2023/05/03		95	%	N/A
8640116	RIB	Method Blank	Total Dissolved Solids	2023/05/03	<10		mg/L	
8640116	RIB	RPD	Total Dissolved Solids	2023/05/03	5.7		%	20
8641183	N_R	Matrix Spike	Dissolved Arsenic (As)	2023/05/03		100	%	80 - 120
			Dissolved Barium (Ba)	2023/05/03		104	%	80 - 120
			Dissolved Boron (B)	2023/05/03		94	%	80 - 120
			Dissolved Cadmium (Cd)	2023/05/03		103	%	80 - 120
			Dissolved Calcium (Ca)	2023/05/03		NC	%	80 - 120
			Dissolved Chromium (Cr)	2023/05/03		96	%	80 - 120
			Dissolved Copper (Cu)	2023/05/03		101	%	80 - 120
			Dissolved Iron (Fe)	2023/05/03		99	%	80 - 120
			Dissolved Lead (Pb)	2023/05/03		102	%	80 - 120
			Dissolved Magnesium (Mg)	2023/05/03		101	%	80 - 120
			Dissolved Manganese (Min)	2023/05/03		NC 102	%	80 - 120
			Dissolved Potassium (K)	2023/05/03		103	%	80 - 120
			Dissolved Sodium (Na)	2023/05/03		NC	%	80 - 120
0044400		Cuellus al Disculu	Dissolved Zinc (Zn)	2023/05/03		98	%	80 - 120
8641183	N_K	Spiked Blank	Dissolved Arsenic (As)	2023/05/03		101	%	80 - 120
			Dissolved Barlum (Ba)	2023/05/03		101	%	80 - 120
			Dissolved Boron (B)	2023/05/03		91	%	80 - 120
			Dissolved Cadmium (Cd)	2023/05/03		100	%	80 - 120
			Dissolved Calcium (Ca)	2023/05/03		95	%	80 - 120
			Dissolved Chromium (Cr)	2023/05/03		96	%	80 - 120
			Dissolved Copper (Cu)	2023/05/03		98	%	80 - 120
			Dissolved Iron (Fe)	2023/05/03		100	%	80 - 120
			Dissolved Lead (PD)	2023/05/03		100	%	80 - 120
			Dissolved Magnesium (Mg)	2023/05/03		99	%	80 - 120
			Dissolved Ivianganese (IVIn)	2023/05/03		98	%	80 - 120
			Dissolved Potassium (K)	2023/05/03		98	%	80 - 120
			Dissolved Sodium (Na)	2023/05/03		101	%	80 - 120
0644402				2023/05/03	.1.0	100	%	80 - 120
8641183	N_K	ivietnoa Blank	Dissolved Arsenic (As)	2023/05/03	<1.0		ug/L	
			Dissolved Barren (B)	2023/05/03	<2.0		ug/L	
			Dissolved Boron (B)	2023/05/03	<10 000		ug/L	
			Dissolved Cadmium (Cd)	2023/05/03	<0.090		ug/L	

Page 11 of 14

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Calcium (Ca)	2023/05/03	<200		ug/L	
			Dissolved Chromium (Cr)	2023/05/03	<5.0		ug/L	
			Dissolved Copper (Cu)	2023/05/03	<0.90		ug/L	
			Dissolved Iron (Fe)	2023/05/03	<100		ug/L	
			Dissolved Lead (Pb)	2023/05/03	<0.50		ug/L	
			Dissolved Magnesium (Mg)	2023/05/03	<50		ug/L	
			Dissolved Manganese (Mn)	2023/05/03	<2.0		ug/L	
			Dissolved Potassium (K)	2023/05/03	<200		ug/L	
			Dissolved Sodium (Na)	2023/05/03	<100		ug/L	
			Dissolved Zinc (Zn)	2023/05/03	<5.0		ug/L	
8641183	N_R	RPD	Dissolved Boron (B)	2023/05/03	1.3		%	20
			Dissolved Calcium (Ca)	2023/05/03	2.8		%	20
			Dissolved Iron (Fe)	2023/05/03	NC		%	20
			Dissolved Magnesium (Mg)	2023/05/03	0.59		%	20
			Dissolved Manganese (Mn)	2023/05/03	1.4		%	20
			Dissolved Sodium (Na)	2023/05/03	1.7		%	20
8641475	KPJ	Matrix Spike	Total Ammonia-N	2023/05/04		99	%	75 - 125
8641475	KPJ	Spiked Blank	Total Ammonia-N	2023/05/04		95	%	80 - 120
8641475	KPJ	Method Blank	Total Ammonia-N	2023/05/04	<0.050		mg/L	
8641475	KPJ	RPD	Total Ammonia-N	2023/05/04	NC		%	20
8642065	GID	Matrix Spike	Dissolved Organic Carbon	2023/05/02		96	%	80 - 120
8642065	GID	Spiked Blank	Dissolved Organic Carbon	2023/05/02		102	%	80 - 120
8642065	GID	Method Blank	Dissolved Organic Carbon	2023/05/02	<0.40		mg/L	
8642065	GID	RPD	Dissolved Organic Carbon	2023/05/02	NC		%	20
8642184	GID	Matrix Spike	Dissolved Organic Carbon	2023/05/03		97	%	80 - 120
8642184	GID	Spiked Blank	Dissolved Organic Carbon	2023/05/03		102	%	80 - 120
8642184	GID	Method Blank	Dissolved Organic Carbon	2023/05/03	<0.40		mg/L	
8642184	GID	RPD	Dissolved Organic Carbon	2023/05/03	2.8		%	20
8642934	SPC	Matrix Spike [VRD166-05]	Total Phosphorus	2023/05/03		99	%	80 - 120
8642934	SPC	QC Standard	Total Phosphorus	2023/05/03		96	%	80 - 120
8642934	SPC	Spiked Blank	Total Phosphorus	2023/05/03		99	%	80 - 120
8642934	SPC	Method Blank	Total Phosphorus	2023/05/03	< 0.004		mg/L	
8642934	SPC	RPD [VRD166-05]	Total Phosphorus	2023/05/03	10		%	20
8643235	RTY	Matrix Spike	Total Kjeldahl Nitrogen (TKN)	2023/05/03		107	%	80 - 120
8643235	RTY	QC Standard	Total Kjeldahl Nitrogen (TKN)	2023/05/03		100	%	80 - 120
8643235	RTY	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2023/05/03		100	%	80 - 120
8643235	RTY	Method Blank	Total Kjeldahl Nitrogen (TKN)	2023/05/03	<0.10		mg/L	
8643235	RTY	RPD	Total Kjeldahl Nitrogen (TKN)	2023/05/03	NC		%	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Page 12 of 14

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

		Bureau Veritas 6740 Campobello Road, Mississauga, (Ontario Canada L5N	2L8 Tel:(905) 817-57	700 Toll-free 800	-563-6266 Fax:(905) 817-5	777 www	v bvna.com							28-	-Apr-	23 09:17			Page 1 of 1
	#705 OL 5	IVOICE TO:		_	REPO	DRT TO:						PROJEC	T INFORMA	TION:		ara Sin	gh			Only:	
Comp	any Name: #725 Story Env	ironmental Inc	Compa	ny Name:			1994 - A		a	uotation	#:	C302	21			C2C	006	1		Bott	e Order #:
Addre	332 Main Street	P.O. Box 716	Attentio	n: Beata t	Bradley		-		P	.0.#:		040.0	0.00			CSC	.000-			1 100	
	Haileybury ON P	0J 1K0	Addres	s:	-	-	_	-	P	roject		048-0	2-33	-	TIDI	E 1	ENIV	1409		9	28793
Tet:	(705) 672-3324	Fax (705) 672-33	25 Tet			Far		1	P	roject Na	me:	Sisk I	andfill	-	1100			COC #:		Projec	t Manager:
Email;	accounting@stor	yenvironmental.com;beata.brad	dley@st Email:	beata.b	radley@stor	yenvironmen	tal.com	10	s	ne #: ampled B	iv:			1.11		10		C#928793_01_01		Sa	ra Singh
Ň	OE REGULATED DRINKIN	G WATER OR WATER INTENDE	D FOR HUMAN	CONSUMPTION	MUST BE				ANAL	YSIS REO	QUESTE	D (PLEASE	BE SPECIFIC	:)				Turnarour	d Time (TAT)	Required:	
e anv	SUBMITTED ON T	HE BUREAU VERITAS DRINKIN	G WATER CHAII	OF CUSTODY				ter								1772	医治和 14	Please provide a	idvance notice	for rush project	5,70k.01997.
_	Regulation 153 (2011)	Other Regulat	ions	Special In	structions	ircle	gg	awbr								Reg	gular (S	tandard) TAT:			
Tat	ole 1 Res/Park Medium	n/Fine CCME Sanitary Se	wer Bylaw	A CARLES		sec	Surf	Groun								Star	ndard TAT	= 5-7 Working days f	pecified): pr.most.tests		-
	ble 2 Ind/Comm Coarse	Reg 558. Storm Sewe	er Bylaw			olea 1/C	- (66	3) - (6	1 1							Plea	ase note: S	tandard TAT for certa	in tests such as	BOD and Dioxin	s/Furans are > 5
Tat	ble Agricoller Forks	MISA Municipality	able) hg	9-02-	3-2-3	1 1							days	s - contact	your Project Manage	r for details.		
		Other	able	1.879.9.15		Iten	1(04)	1 (04								Jot	b Specific	Rush TAT (if applie	is to entire sub	mission)	_
-	Include Criteria	a on Certificate of Analysis (V/N)2		Service.		A Pier	udfi	indfil	1 1							Rus	ah Confirm	ation Number:		me kequired:	L
	Sample Barcode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix	- Ĕ	isk Lu /ater	isk Li								# of	Bottles		0	call lab for #)	
1			Date Gampled	Chine Compress	1112010		w5	co	++								000002		Com	nents	
<u>`</u>		MW01_5_23 MW01_4_23	26 A 1123	9:30	GW	Y		X									7				
2		MM/02 E 22			0.			-	-	-	-			-							
-		MW02-4-23	- 26 Apr 23	10.05	GW	Y		×									7				
3		-MMA/03_5_23			Civil	~		v													
-		HWU3-4-23	26 A pr 23	10:30	GW	7		^									7				
4		-MW04_5_23		11.256	Gul	¥		×									~				
-		MW04-4-23	ZGApr 23	11-00	0.44			1									1				
5		SW01-5-23		1	SW	N	×										<u>,</u>				
+		SW01-4-23	26 Apr 23	10:40	547		1.918										6				
6												1 1									
+								_													
7						- Piving															
									+												
8						1.74															
				-		-			+												
9				1		Thoras.															
10						- Canada -		-	+	-											
1						1 N															
	* RELINQUISHED BY: (SI	gnature/Print) Date: (Y	Y/MM/DD)	lime	RECEIVED	BY: (Signature/I	Print)		Date: (YY/MM	(DD)	1	Time	# jars us	ed and			Laborat	ory Use Only			
J	illian Wight AN	Inight 27 Apr	23 9	100	m	imus	KAN		20230	4/28	09	117	not sub	mitted	Time Sens	itive Te	emperatu	re (°Ç) on Recei	Custody S	ieal Y	es No
10.0 7	~	V							1	/				A.L.			2	23	Present		2
CKNO	WLEDGMENT AND ACCEPTANCE	ITING, WORK SUBMITTED ON THIS CHAI OF OUR TERMS WHICH ARE AVAILABLE	IN OF CUSTODY IS S FOR VIEWING AT WY	UBJECT TO BUREAU	VERITAS'S STA	NDARD TERMS A	ND CONDIT	COC-TER	SIGNING OF THE	S CHAIN	OF CUST	ODY DOCUN	IENT IS				SI P	a distance in the	White:	Bureau Verita	s Yellow: Clie
IT IS T	HE RESPONSIBILITY OF THE RELI	NQUISHER TO ENSURE THE ACCURACY	OF THE CHAIN OF C	USTODY RECORD. A	N INCOMPLETE	CHAIN OF CUST	ODY MAY R	ESULTI	N ANALYTICAL	TAT DEL	AYS.			SAMPLES	MUST BE KE	PT COOL (<	10°C)F	ROM TIME OF SAMP	LING		
SAMP	LE CONTAINER, PRESERVATION.	HOLD TIME AND PACKAGE INFORMATIC	ON CAN BE VIEWED	AT WWW.BVNA COM	ENVIRONMENT	ABORATORI	ESIRESOU	RCESICH	AINCHETODY	FORME	2002	pn	16		UNITED	JELIVERY TO	DEUREAL	VERITAS			
_		and a second												in Motton	而且的政制的制		and the second second	的。這個在同時的	1910		

Your Project #: 048-02-33 Site Location: Sisk Landfill Your C.O.C. #: 951691-01-01

Attention: Beata Bradley

Story Environmental Inc 332 Main Street P.O. Box 716 Haileybury, ON CANADA POJ 1K0

> Report Date: 2024/04/09 Report #: R8100357 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C3Z9611

Received: 2023/11/16, 08:58

Sample Matrix: Water # Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	4	N/A	2023/11/20	CAM SOP-00448	SM 24 2320 B m
Alkalinity	2	N/A	2023/11/22	CAM SOP-00448	SM 24 2320 B m
Biochemical Oxygen Demand (BOD)	6	2023/11/18	2023/11/23	CAM SOP-00427	SM 23 5210B m
Chloride by Automated Colourimetry	2	N/A	2023/11/20	CAM SOP-00463	SM 23 4500-Cl E m
Chloride by Automated Colourimetry	4	N/A	2023/11/21	CAM SOP-00463	SM 23 4500-Cl E m
Dissolved Organic Carbon (DOC) (1)	5	N/A	2023/11/17	CAM SOP-00446	SM 24 5310 B m
Hardness (calculated as CaCO3)	1	N/A	2023/11/22	CAM SOP	SM 2340 B
				00102/00408/00447	
Hardness (calculated as CaCO3)	5	N/A	2023/11/23	CAM SOP	SM 2340 B
				00102/00408/00447	
Dissolved Metals by ICPMS	5	N/A	2023/11/20	CAM SOP-00447	EPA 6020B m
Total Metals Analysis by ICPMS	1	2023/11/21	2023/11/21	CAM SOP-00447	EPA 6020B m
Total Ammonia-N	6	N/A	2023/11/21	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (2)	6	N/A	2023/11/20	CAM SOP-00440	SM 23 4500-NO3I/NO2B
Sulphate by Automated Turbidimetry	2	N/A	2023/11/20	CAM SOP-00464	SM 23 4500-SO42- E m
Sulphate by Automated Turbidimetry	4	N/A	2023/11/21	CAM SOP-00464	SM 23 4500-SO42- E m
Total Dissolved Solids	6	2023/11/20	2023/11/21	CAM SOP-00428	SM 23 2540C m
Total Kjeldahl Nitrogen in Water	6	2023/11/17	2023/11/20	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	6	2023/11/17	2023/11/18	CAM SOP-00407	SM 23 4500-P I

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or

Page 1 of 16

Your Project #: 048-02-33 Site Location: Sisk Landfill Your C.O.C. #: 951691-01-01

Attention: Beata Bradley

Story Environmental Inc 332 Main Street P.O. Box 716 Haileybury, ON CANADA POJ 1KO

> Report Date: 2024/04/09 Report #: R8100357 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C3Z9611

Received: 2023/11/16, 08:58

implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

(2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		XPS244		XPS245		XPS246		XPS247			
Sampling Date		2023/11/14		2023/11/14		2023/11/14		2023/11/14			
		11:20		11:45		12:15		12:50			
COC Number		951691-01-01		951691-01-01		951691-01-01		951691-01-01			
	UNITS	MW1	QC Batch	MW2	QC Batch	MW3	QC Batch	MW4	RDL	QC Batch	
Calculated Parameters											
Hardness (CaCO3)	mg/L	570	9055785	140	9055785	150	9055785	460	1.0	9055785	
Inorganics											
Total Ammonia-N	mg/L	4.7	9056589	0.25	9056589	<0.050	9056589	0.45	0.050	9056589	
Total BOD	mg/L	3	9058055	<2	9058055	<2	9058055	<2	2	9058055	
Total Dissolved Solids	mg/L	700	9059239	165	9059239	140	9059239	715	10	9059239	
Total Kjeldahl Nitrogen (TKN)	mg/L	5.0	9056474	0.45	9056474	0.14	9056474	1.2	0.10	9056474	
Dissolved Organic Carbon	mg/L	9.9	9056401	14	9056401	3.9	9056401	12	0.40	9056401	
Total Phosphorus	mg/L	0.040	9056464	0.15	9056464	0.025	9056464	0.014	0.004	9056464	
Dissolved Sulphate (SO4)	mg/L	11	9058760	1.7	9058760	2.4	9054915	42	1.0	9058760	
Alkalinity (Total as CaCO3)	mg/L	530	9056543	140	9058744	130	9056543	440	1.0	9058744	
Dissolved Chloride (Cl-)	mg/L	21	9058757	<1.0	9058757	<1.0	9054914	92	1.0	9058757	
Nitrite (N)	mg/L	<0.010	9057794	<0.010	9057794	<0.010	9057794	<0.010	0.010	9057794	
Nitrate (N)	mg/L	<0.10	9057794	<0.10	9057794	<0.10	9057794	0.56	0.10	9057794	
Nitrate + Nitrite (N)	mg/L	<0.10	9057794	<0.10	9057794	<0.10	9057794	0.56	0.10	9057794	
RDL = Reportable Detection Lir	RDL = Reportable Detection Limit										
QC Batch = Quality Control Bat	2C Batch = Quality Control Batch										

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		XPS248			XPS249					
Sampling Date		2023/11/14			2023/11/14					
COC Number		951691-01-01			951691-01-01					
	UNITS	SW1	RDL	QC Batch	Y1	RDL	QC Batch			
Calculated Parameters										
Hardness (CaCO3)	mg/L	1.3	1.0	9055784	150	1.0	9055785			
Inorganics										
Total Ammonia-N	mg/L	0.10	0.050	9056589	<0.050	0.050	9056589			
Total BOD	mg/L	<2	2	9058055	<2	2	9058055			
Total Dissolved Solids	mg/L	10	10	9059239	145	10	9059239			
Total Kjeldahl Nitrogen (TKN)	mg/L	0.32	0.10	9056474	0.10	0.10	9056474			
Dissolved Organic Carbon	mg/L				4.1	0.40	9056394			
Total Phosphorus	mg/L	0.019	0.004	9056464	0.023	0.004	9056464			
Dissolved Sulphate (SO4)	mg/L	2.7	1.0	9054915	2.3	1.0	9058760			
Alkalinity (Total as CaCO3)	mg/L	<1.0	1.0	9056543	150	1.0	9056543			
Dissolved Chloride (Cl-)	mg/L	<1.0	1.0	9054914	<1.0	1.0	9058757			
Nitrite (N)	mg/L	<0.010	0.010	9057794	<0.010	0.010	9057794			
Nitrate (N)	mg/L	<0.10	0.10	9057794	<0.10	0.10	9057794			
Nitrate + Nitrite (N)	mg/L	<0.10	0.10	9057794	<0.10	0.10	9057794			
RDL = Reportable Detection Lir QC Batch = Quality Control Bat	nit ch									

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		XPS244	XPS245	XPS246	XPS247					
Sampling Data		2023/11/14	2023/11/14	2023/11/14	2023/11/14					
Sampling Date		11:20	11:45	12:15	12:50					
COC Number		951691-01-01	951691-01-01	951691-01-01	951691-01-01					
	UNITS	MW1	MW2	MW3	MW4	RDL	QC Batch			
Metals										
Dissolved Arsenic (As)	ug/L	15	<1.0	<1.0	1.4	1.0	9056919			
Dissolved Barium (Ba)	ug/L	230	45	13	110	2.0	9056919			
Dissolved Boron (B)	ug/L	1100	380	<10	290	10	9056919			
Dissolved Cadmium (Cd)	ug/L	<0.090	<0.090	<0.090	<0.090	0.090	9056919			
Dissolved Calcium (Ca)	ug/L	190000	49000	46000	150000	200	9056919			
Dissolved Chromium (Cr)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	9056919			
Dissolved Copper (Cu)	ug/L	2.1	<0.90	1.7	12	0.90	9056919			
Dissolved Iron (Fe)	ug/L	21000	5400	350	360	100	9056919			
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	9056919			
Dissolved Magnesium (Mg)	ug/L	22000	4100	7700	21000	50	9056919			
Dissolved Manganese (Mn)	ug/L	970	220	14	1100	2.0	9056919			
Dissolved Potassium (K)	ug/L	12000	400	630	11000	200	9056919			
Dissolved Sodium (Na)	ug/L	39000	2300	1000	61000	100	9056919			
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	9056919			
RDL = Reportable Detection Limit										
QC Batch = Quality Control Ba	atch									

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		XPS248			XPS249		
Sampling Date		2023/11/14			2023/11/14		
COC Number		951691-01-01			951691-01-01	[
	UNITS	SW1	RDL	QC Batch	Y1	RDL	QC Batch
Metals						<u> </u>	
Dissolved Arsenic (As)	ug/L				<1.0	1.0	9056919
Total Arsenic (As)	mg/L	<0.0010	0.0010	9061628			
Dissolved Barium (Ba)	ug/L				13	2.0	9056919
Total Barium (Ba)	mg/L	<0.0020	0.0020	9061628			
Dissolved Boron (B)	ug/L				<10	10	9056919
Total Boron (B)	mg/L	<0.010	0.010	9061628			
Dissolved Cadmium (Cd)	ug/L				<0.090	0.090	9056919
Total Cadmium (Cd)	mg/L	<0.000090	0.000090	9061628			
Dissolved Calcium (Ca)	ug/L				46000	200	9056919
Dissolved Chromium (Cr)	ug/L				<5.0	5.0	9056919
Total Chromium (Cr)	mg/L	<0.0050	0.0050	9061628			
Dissolved Copper (Cu)	ug/L				2.5	0.90	9056919
Total Copper (Cu)	mg/L	<0.00090	0.00090	9061628			
Dissolved Iron (Fe)	ug/L				370	100	9056919
Total Iron (Fe)	mg/L	0.15	0.10	9061628			
Dissolved Lead (Pb)	ug/L				<0.50	0.50	9056919
Total Lead (Pb)	mg/L	0.00052	0.00050	9061628			
Dissolved Magnesium (Mg)	ug/L				8000	50	9056919
Dissolved Manganese (Mn)	ug/L				14	2.0	9056919
Dissolved Potassium (K)	ug/L				650	200	9056919
Dissolved Sodium (Na)	ug/L				1100	100	9056919
Dissolved Zinc (Zn)	ug/L				<5.0	5.0	9056919
Total Zinc (Zn)	mg/L	<0.0050	0.0050	9061628			
RDL = Reportable Detection L	.imit						
QC Batch = Quality Control Ba	atch						

TEST SUMMARY

Bureau Veritas ID:	XPS244
Sample ID:	MW1
Matrix:	Water

Collected:	2023/11/14
Shipped:	
Received:	2023/11/16

Instrumentation	Batch	Extracted	Date Analyzed	Analyst
AT	9056543	N/A	2023/11/20	Surinder Rai
DO	9058055	2023/11/18	2023/11/23	Nusrat Naz
SKAL	9058757	N/A	2023/11/21	Alina Dobreanu
TOCV/NDIR	9056401	N/A	2023/11/17	Gyulshen Idriz
	9055785	N/A	2023/11/23	Automated Statchk
ICP/MS	9056919	N/A	2023/11/20	Nan Raykha
LACH/NH4	9056589	N/A	2023/11/21	Shivani Shivani
LACH	9057794	N/A	2023/11/20	Chandra Nandlal
SKAL	9058760	N/A	2023/11/21	Alina Dobreanu
BAL	9059239	2023/11/20	2023/11/21	Razieh Tabesh
SKAL	9056474	2023/11/17	2023/11/20	Rajni Tyagi
SKAL/P	9056464	2023/11/17	2023/11/18	Muskan
	Instrumentation AT DO SKAL TOCV/NDIR ICP/MS LACH/NH4 LACH SKAL BAL SKAL SKAL SKAL SKAL/P	Instrumentation Batch AT 9056543 DO 9058055 SKAL 9058757 TOCV/NDIR 9056401 9055785 9056919 ICP/MS 9056589 LACH/NH4 9056589 LACH 9057794 SKAL 9058760 BAL 9059239 SKAL/P 9056464	Instrumentation Batch Extracted AT 9056543 N/A DO 9058055 2023/11/18 SKAL 9058757 N/A TOCV/NDIR 9056401 N/A ICP/MS 90565919 N/A LACH/NH4 9056589 N/A SKAL 9057794 N/A SKAL 9058760 N/A LACH 9059239 2023/11/20 SKAL 9056474 2023/11/17 SKAL/P 9056464 2023/11/17	Instrumentation Batch Extracted Date Analyzed AT 9056543 N/A 2023/11/20 DO 9058055 2023/11/18 2023/11/23 SKAL 9058757 N/A 2023/11/21 TOCV/NDIR 9056401 N/A 2023/11/21 ICP/MS 9056919 N/A 2023/11/20 LACH/NH4 9056589 N/A 2023/11/20 SKAL 9058760 N/A 2023/11/20 LACH 9055794 N/A 2023/11/20 LACH 9059794 N/A 2023/11/20 SKAL 9059239 2023/11/20 2023/11/21 BAL 9059239 2023/11/20 2023/11/21 SKAL/P 9056464 2023/11/17 2023/11/20

Bureau Veritas ID: XPS245 Sample ID: MW2 Matrix: Water

Collected:	2023/11/14
Snipped: Received:	2023/11/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	9058744	N/A	2023/11/22	Surinder Rai
Biochemical Oxygen Demand (BOD)	DO	9058055	2023/11/18	2023/11/23	Nusrat Naz
Chloride by Automated Colourimetry	SKAL	9058757	N/A	2023/11/21	Alina Dobreanu
Dissolved Organic Carbon (DOC)	TOCV/NDIR	9056401	N/A	2023/11/17	Gyulshen Idriz
Hardness (calculated as CaCO3)		9055785	N/A	2023/11/23	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	9056919	N/A	2023/11/20	Nan Raykha
Total Ammonia-N	LACH/NH4	9056589	N/A	2023/11/21	Shivani Shivani
Nitrate & Nitrite as Nitrogen in Water	LACH	9057794	N/A	2023/11/20	Chandra Nandlal
Sulphate by Automated Turbidimetry	SKAL	9058760	N/A	2023/11/21	Alina Dobreanu
Total Dissolved Solids	BAL	9059239	2023/11/20	2023/11/21	Razieh Tabesh
Total Kjeldahl Nitrogen in Water	SKAL	9056474	2023/11/17	2023/11/20	Rajni Tyagi
Total Phosphorus (Colourimetric)	SKAL/P	9056464	2023/11/17	2023/11/18	Muskan

Bureau Veritas ID: XPS246 Sample ID: MW3 Matrix: Water

Collected: 2023/11/14 Shipped: **Received:** 2023/11/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	9056543	N/A	2023/11/20	Surinder Rai
Biochemical Oxygen Demand (BOD)	DO	9058055	2023/11/18	2023/11/23	Nusrat Naz
Chloride by Automated Colourimetry	SKAL	9054914	N/A	2023/11/20	Massarat Jan
Dissolved Organic Carbon (DOC)	TOCV/NDIR	9056401	N/A	2023/11/17	Gyulshen Idriz
Hardness (calculated as CaCO3)		9055785	N/A	2023/11/23	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	9056919	N/A	2023/11/20	Nan Raykha
Total Ammonia-N	LACH/NH4	9056589	N/A	2023/11/21	Shivani Shivani
Nitrate & Nitrite as Nitrogen in Water	LACH	9057794	N/A	2023/11/20	Chandra Nandlal

Page 7 of 16

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Microbiology testing is conducted at 6660 Campobello Rd. Chemistry testing is conducted at 6740 Campobello Rd.

TEST SUMMARY

Bureau Veritas ID: Sample ID:	XPS246 MW3					Collected: Shipped:	2023/11/14
Matrix:	Water					Received:	2023/11/16
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Sulphate by Automated T	urbidimetry	SKAL	9054915	N/A	2023/11/20	Massarat J	an
Total Dissolved Solids		BAL	9059239	2023/11/20	2023/11/21	Razieh Tab	esh
Total Kjeldahl Nitrogen in	Water	SKAL	9056474	2023/11/17	2023/11/20	Rajni Tyag	
Total Phosphorus (Colour	imetric)	SKAL/P	9056464	2023/11/17	2023/11/18	Muskan	
Bureau Veritas ID: Sample ID: Matrix:	XPS246 Dup MW3 Water					Collected: Shipped: Received:	2023/11/14 2023/11/16
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Total Dissolved Solids		BAL	9059239	2023/11/20	2023/11/21	Razieh Tab	esh
Bureau Veritas ID: Sample ID: Matrix:	XPS247 MW4 Water					Collected: Shipped: Received:	2023/11/14 2023/11/16
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Alkalinity		AT	9058744	N/A	2023/11/22	Surinder R	ai
Biochemical Oxygen Dem	and (BOD)	DO	9058055	2023/11/18	2023/11/23	Nusrat Na	2
Chloride by Automated Co	olourimetry	SKAL	9058757	N/A	2023/11/21	Alina Dobr	eanu
Dissolved Organic Carbon	(DOC)	TOCV/NDIR	9056401	N/A	2023/11/17	Gyulshen I	driz
Hardness (calculated as C	aCO3)		9055785	N/A	2023/11/23	Automate	d Statchk
Dissolved Metals by ICPM	IS	ICP/MS	9056919	N/A	2023/11/20	Nan Raykh	a
Total Ammonia-N		LACH/NH4	9056589	N/A	2023/11/21	Shivani Sh	vani
Nitrate & Nitrite as Nitrog	gen in Water	LACH	9057794	N/A	2023/11/20	Chandra N	andlal
Sulphate by Automated T	urbidimetry	SKAL	9058760	N/A	2023/11/21	Alina Dobr	eanu
Total Dissolved Solids		BAL	9059239	2023/11/20	2023/11/21	Razieh Tab	esh
Total Kjeldahl Nitrogen in	Water	SKAL	9056474	2023/11/17	2023/11/20	Rajni Tyag	
Total Phosphorus (Colour	imetric)	SKAL/P	9056464	2023/11/17	2023/11/18	Muskan	
Bureau Veritas ID: Sample ID:	XPS248					Collected:	2023/11/14

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	9056543	N/A	2023/11/20	Surinder Rai
Biochemical Oxygen Demand (BOD)	DO	9058055	2023/11/18	2023/11/23	Nusrat Naz
Chloride by Automated Colourimetry	SKAL	9054914	N/A	2023/11/20	Massarat Jan
Hardness (calculated as CaCO3)		9055784	N/A	2023/11/22	Automated Statchk
Total Metals Analysis by ICPMS	ICP/MS	9061628	2023/11/21	2023/11/21	Azita Fazaeli
Total Ammonia-N	LACH/NH4	9056589	N/A	2023/11/21	Shivani Shivani
Nitrate & Nitrite as Nitrogen in Water	LACH	9057794	N/A	2023/11/20	Chandra Nandlal
Sulphate by Automated Turbidimetry	SKAL	9054915	N/A	2023/11/20	Massarat Jan
Total Dissolved Solids	BAL	9059239	2023/11/20	2023/11/21	Razieh Tabesh

Page 8 of 16

Sample ID: Y1 Matrix: Water Story Environmental Inc Client Project #: 048-02-33 Site Location: Sisk Landfill Sampler Initials: JW

Received: 2023/11/16

TEST SUMMARY

Bureau Veritas ID: Sample ID: Matrix:	XPS248 SW1 Water					Collected: Shipped: Received:	2023/11/14 2023/11/16
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Total Kjeldahl Nitrogen in	n Water	SKAL	9056474	2023/11/17	2023/11/20	Rajni Tyagi	i
Total Phosphorus (Colour	rimetric)	SKAL/P	9056464	2023/11/17	2023/11/18	Muskan	
Bureau Veritas ID: Sample ID:	XPS249 Y1					Collected: Shipped:	2023/11/14

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	9056543	N/A	2023/11/20	Surinder Rai
Biochemical Oxygen Demand (BOD)	DO	9058055	2023/11/18	2023/11/23	Nusrat Naz
Chloride by Automated Colourimetry	SKAL	9058757	N/A	2023/11/21	Alina Dobreanu
Dissolved Organic Carbon (DOC)	TOCV/NDIR	9056394	N/A	2023/11/17	Gyulshen Idriz
Hardness (calculated as CaCO3)		9055785	N/A	2023/11/23	Automated Statchk
Dissolved Metals by ICPMS	ICP/MS	9056919	N/A	2023/11/20	Nan Raykha
Total Ammonia-N	LACH/NH4	9056589	N/A	2023/11/21	Shivani Shivani
Nitrate & Nitrite as Nitrogen in Water	LACH	9057794	N/A	2023/11/20	Chandra Nandlal
Sulphate by Automated Turbidimetry	SKAL	9058760	N/A	2023/11/21	Alina Dobreanu
Total Dissolved Solids	BAL	9059239	2023/11/20	2023/11/21	Razieh Tabesh
Total Kjeldahl Nitrogen in Water	SKAL	9056474	2023/11/17	2023/11/20	Rajni Tyagi
Total Phosphorus (Colourimetric)	SKAL/P	9056464	2023/11/17	2023/11/18	Muskan

Bureau Veritas ID: Sample ID: Matrix:	XPS249 Dup Y1 Water					Collected: Shipped: Received:	2023/11/14 2023/11/16
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Biochemical Oxygen Dem	and (BOD)	DO	9058055	2023/11/18	2023/11/23	Nusrat Naz	

Page 9 of 16 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Microbiology testing is conducted at 6660 Campobello Rd. Chemistry testing is conducted at 6740 Campobello Rd.

GENERAL COMMENTS

Each te	emperature is the ave	rage of up to th	ree cooler temperatures taken at receipt
	Package 1	4.7°C	

Revised Report [2024/04/09]:Sample(s) ID revised as per client.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA	A/QC								
Ba	atch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
905	54914	MJ1	Matrix Spike	Dissolved Chloride (Cl-)	2023/11/20		NC	%	80 - 120
905	54914	MJ1	Spiked Blank	Dissolved Chloride (Cl-)	2023/11/20		94	%	80 - 120
905	54914	MJ1	Method Blank	Dissolved Chloride (Cl-)	2023/11/20	<1.0		mg/L	
905	54914	MJ1	RPD	Dissolved Chloride (Cl-)	2023/11/20	0.49		%	20
905	54915	MJ1	Matrix Spike	Dissolved Sulphate (SO4)	2023/11/20		NC	%	75 - 125
905	54915	MJ1	Spiked Blank	Dissolved Sulphate (SO4)	2023/11/20		94	%	80 - 120
905	54915	MJ1	Method Blank	Dissolved Sulphate (SO4)	2023/11/20	<1.0		mg/L	
905	54915	MJ1	RPD	Dissolved Sulphate (SO4)	2023/11/20	0.75		%	20
905	56394	GID	Matrix Spike	Dissolved Organic Carbon	2023/11/17		88	%	80 - 120
905	56394	GID	Spiked Blank	Dissolved Organic Carbon	2023/11/17		92	%	80 - 120
905	56394	GID	Method Blank	Dissolved Organic Carbon	2023/11/17	<0.40		mg/L	
905	56394	GID	RPD	Dissolved Organic Carbon	2023/11/17	4.4		%	20
905	56401	GID	Matrix Spike	Dissolved Organic Carbon	2023/11/17		92	%	80 - 120
905	56401	GID	Spiked Blank	Dissolved Organic Carbon	2023/11/17		97	%	80 - 120
905	56401	GID	Method Blank	Dissolved Organic Carbon	2023/11/17	<0.40		mg/L	
905	56401	GID	RPD	Dissolved Organic Carbon	2023/11/17	3.4		%	20
905	56464	MUM	Matrix Spike	Total Phosphorus	2023/11/18		98	%	80 - 120
905	56464	MUM	QC Standard	Total Phosphorus	2023/11/18		111	%	80 - 120
905	56464	MUM	Spiked Blank	Total Phosphorus	2023/11/18		109	%	80 - 120
905	56464	MUM	Method Blank	Total Phosphorus	2023/11/18	< 0.004		mg/L	
905	56464	MUM	RPD	Total Phosphorus	2023/11/18	1.6		%	20
905	56474	RTY	Matrix Spike	Total Kjeldahl Nitrogen (TKN)	2023/11/20		100	%	80 - 120
905	56474	RTY	QC Standard	Total Kjeldahl Nitrogen (TKN)	2023/11/20		99	%	80 - 120
905	56474	RTY	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2023/11/20		96	%	80 - 120
905	56474	RTY	Method Blank	Total Kjeldahl Nitrogen (TKN)	2023/11/20	<0.10		mg/L	
905	56474	RTY	RPD	Total Kjeldahl Nitrogen (TKN)	2023/11/20	NC		%	20
905	56543	SAU	Spiked Blank	Alkalinity (Total as CaCO3)	2023/11/20		97	%	85 - 115
905	56543	SAU	Method Blank	Alkalinity (Total as CaCO3)	2023/11/20	<1.0		mg/L	
905	56543	SAU	RPD	Alkalinity (Total as CaCO3)	2023/11/20	0.81		%	20
905	56589	SSV	Matrix Spike	Total Ammonia-N	2023/11/21		94	%	75 - 125
905	56589	SSV	Spiked Blank	Total Ammonia-N	2023/11/21		98	%	80 - 120
905	56589	SSV	Method Blank	Total Ammonia-N	2023/11/21	<0.050		mg/L	
905	56589	SSV	RPD	Total Ammonia-N	2023/11/21	0.71		%	20
905	56919	N_R	Matrix Spike	Dissolved Arsenic (As)	2023/11/20		101	%	80 - 120
				Dissolved Barium (Ba)	2023/11/20		NC	%	80 - 120
				Dissolved Boron (B)	2023/11/20		NC	%	80 - 120
				Dissolved Cadmium (Cd)	2023/11/20		107	%	80 - 120
				Dissolved Calcium (Ca)	2023/11/20		NC	%	80 - 120
				Dissolved Chromium (Cr)	2023/11/20		100	%	80 - 120
				Dissolved Copper (Cu)	2023/11/20		104	%	80 - 120
				Dissolved Iron (Fe)	2023/11/20		99	%	80 - 120
				Dissolved Lead (Pb)	2023/11/20		97	%	80 - 120
				Dissolved Magnesium (Mg)	2023/11/20		NC	%	80 - 120
1				Dissolved Manganese (Mn)	2023/11/20		97	%	80 - 120
1				Dissolved Potassium (K)	2023/11/20		106	%	80 - 120
1				Dissolved Sodium (Na)	2023/11/20		NC	%	80 - 120
1				Dissolved Zinc (Zn)	2023/11/20		97	%	80 - 120
905	56919	NR	Spiked Blank	Dissolved Arsenic (As)	2023/11/20		100	%	80 - 120
				Dissolved Barium (Ba)	2023/11/20		101	%	80 - 120
1				Dissolved Boron (B)	2023/11/20		102	%	80 - 120
1				Dissolved Cadmium (Cd)	2023/11/20		104	%	80 - 120
1					,,				

Page 11 of 16

QUALITY ASSURANCE REPORT(CONT'D)

9356913 N_R RP Insolved Calcium (Ca) 202311/20 103 % 80-120 9356913 N_R N_R Nethed Blank 100 % 80-120 9356913 N_R Methed Blank 100 % 80-120 9356913 N_R Methed Blank 1000 % 80-120 9356913 N_R Methed Blank 1000 202311/20 100 % 80-120 9356913 N_R Methed Blank 1000/ved Marganese (Mn) 202311/20 400 ugA 80-120 9356913 N_R Methed Blank 1000/ved Arcsnic (A) 202311/20 4.00 ugA 1 9356914 N_R Methed Blank 1000/ved Arcsnic (A) 202311/20 4.00 ugA 1 9356914 N_R Methed Blank 1000/ved Arcsnic (A) 202311/20 4.00 ugA 1 9356914 N_R Methed Blank 1000/ved Arcsnic (A) 202311/20 4.00 ugA 1	Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
95:05/04 Chromium (Cr) 2223/11/20 101 % 80-120 Diso/ved Copper (Cu) 2233/11/20 100 % 80-120 Diso/ved Icad (Pb) 2233/11/20 98 % 80-120 Diso/ved Maganese (MR) 2233/11/20 98 % 80-120 Diso/ved Maganese (MR) 2233/11/20 99 % 80-120 Diso/ved Maganese (MR) 2233/11/20 99 % 80-120 Diso/ved Solum (Nk) 2233/11/20 <103				Dissolved Calcium (Ca)	2023/11/20		103	%	80 - 120
9656919 N.R. RPD Disolved Coppr (Cu) 2023/11/20 100 % 80 - 120 9656919 2023/11/20 100 % 80 - 120 Disolved Magnesium (Mp) 2023/11/20 97 % 80 - 120 Disolved Magnesium (Np) 2023/11/20 93 % 80 - 120 Disolved Parasium (N) 2023/11/20 93 % 80 - 120 Disolved Parasium (N) 2023/11/20 <1.0				Dissolved Chromium (Cr)	2023/11/20		101	%	80 - 120
9569919 N.R. Wethod Blank Disolved Incor(re) 2023/11/20 98 %8 80-120 9559919 N.R. Wethod Blank Disolved Maganese (MR) 2023/11/20 98 %8 80-120 Disolved Maganese (MR) 2023/11/20 103 %8 80-120 Disolved Solum (Ns) 2023/11/20 <1.0				Dissolved Copper (Cu)	2023/11/20		104	%	80 - 120
9056919 N.R RPD Disolved Magnesium (Mg) 2023/11/20 97 % 80 - 120 9056919 N.R Method Blank Disolved Magnesium (Mg) 2023/11/20 99 % 80 - 120 9056919 N.R Method Blank Disolved Scium (Na) 2023/11/20 <10				Dissolved Iron (Fe)	2023/11/20		100	%	80 - 120
9056919 N_R R M 80 - 120 9056919 N_R Nethod Blank 2033/11/20 103 % 80 - 120 9056919 N_R Nethod Blank Disolved Zinc (Zn) 2023/11/20 99 % 80 - 120 9056919 N_R Nethod Blank Disolved Zinc (Zn) 2023/11/20 <1.0				Dissolved Lead (Pb)	2023/11/20		100	%	80 - 120
9056919 N_R Rethod Blank Dissolved Angenee (Mn) 2023/11/20 90 % 80 - 120 9056919 N_R Method Blank Dissolved Ansenic (As) 2023/11/20 <1.0				Dissolved Magnesium (Mg)	2023/11/20		98	%	80 - 120
9056919 N_R Rethod Blank Dissolved Coll 2023/11/20 103 % 80 : 120 9056919 N_R Method Blank Dissolved Coll 2023/11/20 -<10				Dissolved Manganese (Mn)	2023/11/20		97	%	80 - 120
9056919 N_R Method Blank Dissolved Ansanic (As) 2023/11/20 <1.0				Dissolved Potassium (K)	2023/11/20		103	%	80 - 120
Dissolved Znnc [Zn] 2023/11/20 99 % 80-120 9056919 N_R Method Blank Dissolved Barium (B3) 2023/11/20 <10				Dissolved Sodium (Na)	2023/11/20		99	%	80 - 120
905919 N_R N_R Picsolved Arsenic (A) 2033/11/20 <1.0				Dissolved Zinc (Zn)	2023/11/20		99	%	80 - 120
PoSoPed Barium (Ba) 2023/11/20 <-0.0	9056919	N_R	Method Blank	Dissolved Arsenic (As)	2023/11/20	<1.0		ug/L	
Poisobed Boron (b) 2023/11/20 <.0.09				Dissolved Barium (Ba)	2023/11/20	<2.0		ug/L	
P056919 N_R RPD Dissolved Cadmium (Ca) 2023/11/20 <0.090				Dissolved Boron (B)	2023/11/20	<10		ug/L	
Poisolved Calcium (Ca) 2023/11/20 <200				Dissolved Cadmium (Cd)	2023/11/20	<0.090		ug/L	
9056919 N_R RPD Dissolved Chromium (Cr) 2023/11/20 <0.90				Dissolved Calcium (Ca)	2023/11/20	<200		ug/L	
P056919 N_R RPD Dissolved Copper (Cu) 2223/11/20 <0.90				Dissolved Chromium (Cr)	2023/11/20	<5.0		ug/L	
9056919 N_R RPD Dissolved icad (Pb) 2023/11/20 <0.00				Dissolved Copper (Cu)	2023/11/20	<0.90		ug/L	
P955919 N_R RPD Dissolved Manganese (Mn) 2023/11/20 <<0.0				Dissolved Iron (Fe)	2023/11/20	<100		ug/L	
9056919 N_R RPD Dissolved Magnesium (Mg) 2023/11/20 <2.0				Dissolved Lead (Pb)	2023/11/20	<0.50		ug/L	
9056919 N_R RPD Dissolved Potassium (K) 2023/11/20 <2.0				Dissolved Magnesium (Mg)	2023/11/20	<50		ug/L	
9056919 N_R RPD Dissolved Potassium (K) 2023/11/20 <200				Dissolved Manganese (Mn)	2023/11/20	<2.0		ug/L	
9056919 N_R RPD Dissolved Socium (Na) 2023/11/20 <100				Dissolved Potassium (K)	2023/11/20	<200		ug/L	
Dissolved Zinc (Zn) 2023/11/20 <5.0 ug/L 9056919 N_R RPD Dissolved Boron (B) 2023/11/20 3.6 % 20 Dissolved Chromium (Ca) 2023/11/20 3.0 % 20 Dissolved Chromium (Cr) 2023/11/20 0.4L % 20 Dissolved Iron (Fe) 2023/11/20 0.4L % 20 Dissolved Manganese (Mn) 2023/11/20 0.26 % 20 Dissolved Sodium (Na) 2023/11/20 0.35 % 20 Dissolved Sodium (Na) 2023/11/20 0.76 % 20 Dissolved Zinc (Zn) 2023/11/20 0.76 % 20 9057794 C_N Matrix Spike Nitrite (N) 2023/11/20 104 % 80 - 120 9057794 C_N Spiked Blank Nitrite (N) 2023/11/20 92 % 80 - 120 9057794 C_N RPD Nitrate (N) 2023/11/20 <0.10				Dissolved Sodium (Na)	2023/11/20	<100		ug/L	
9056919 N_R RPD Dissolved Boron (B) 2023/11/20 3.6 % 20 Dissolved Clacium (Ca) 2023/11/20 3.0 % 20 Dissolved Chromium (Cr) 2023/11/20 NC % 20 Dissolved Chromium (Cr) 2023/11/20 0.41 % 20 Dissolved Manganese (Mn) 2023/11/20 0.26 % 20 Dissolved Potassium (K) 2023/11/20 0.26 % 20 Dissolved Potassium (K) 2023/11/20 0.35 % 20 Dissolved Potassium (K) 2023/11/20 0.70 % 20 9057794 C_N Matrix Spike Nitrite (N) 2023/11/20 NC % 80 - 120 9057794 C_N Spiked Blank Nitrite (N) 2023/11/20 104 % 80 - 120 9057794 C_N Method Blank Nitrite (N) 2023/11/20 <0.10				Dissolved Zinc (Zn)	2023/11/20	<5.0		ug/L	
Dissolved Calcium (Ca) 2023/11/20 3.0 % 20 Dissolved Chromium (Cr) 2023/11/20 NC % 20 Dissolved Iron (Fe) 2023/11/20 0.41 % 20 Dissolved Manganese (Mn) 2023/11/20 0.26 % 20 Dissolved Sodium (Na) 2023/11/20 0.26 % 20 Dissolved Patasium (K) 2023/11/20 0.70 % 20 Dissolved Patasium (Na) 2023/11/20 0.70 % 20 Dissolved Zinc (Zn) 2023/11/20 0.70 % 20 9057794 C_N Matrix Spike Nitrite (N) 2023/11/20 NC % 80 - 120 9057794 C_N Method Blank Nitrite (N) 2023/11/20 905 % 80 - 120 9057794 C_N Method Blank Nitrite (N) 2023/11/20 <0.010	9056919	NR	RPD	Dissolved Boron (B)	2023/11/20	3.6		%	20
Pissolved Chromium (Cr) 2023/11/20 NC % 20 Dissolved Iron (Fe) 2023/11/20 0.41 % 20 Dissolved Magnesium (Mg) 2023/11/20 0.41 % 20 Dissolved Magnesium (Mg) 2023/11/20 0.26 % 20 Dissolved Potassium (K) 2023/11/20 0.35 % 20 Dissolved Zinc (Zn) 2023/11/20 0.70 % 20 9057794 C_N Matrix Spike Nitrite (N) 2023/11/20 NC % 80 - 120 9057794 C_N Spiked Blank Nitrite (N) 2023/11/20 91 % 80 - 120 9057794 C_N Method Blank Nitrite (N) 2023/11/20 92 % 80 - 120 9057794 C_N Method Blank Nitrite (N) 2023/11/20 <0.01		_		Dissolved Calcium (Ca)	2023/11/20	3.0		%	20
Dissolved Iron (Fe) 2023/11/20 0.41 % 20 Dissolved Magnesium (Mg) 2023/11/20 1.9 % 20 Dissolved Magnese (Mn) 2023/11/20 0.26 % 20 Dissolved Magnese (Mn) 2023/11/20 0.35 % 20 Dissolved Potassium (K) 2023/11/20 0.70 % 20 Dissolved Zinc (Zn) 2023/11/20 0.70 % 20 9057794 C_N Matrix Spike Nitrite (N) 2023/11/20 NC % 80 - 120 9057794 C_N Spiked Blank Nitrite (N) 2023/11/20 90 % 80 - 120 9057794 C_N Method Blank Nitrite (N) 2023/11/20 <0.010				Dissolved Chromium (Cr)	2023/11/20	NC		%	20
Dissolved Magnesium (Mg) 2023/11/20 1.9 % 20 Dissolved Maganese (Mn) 2023/11/20 0.26 % 20 Dissolved Potassium (K) 2023/11/20 0.35 % 20 Dissolved Potassium (K) 2023/11/20 0.35 % 20 9057794 C_N Matrix Spike Nitrite (N) 2023/11/20 NC % 20 9057794 C_N Matrix Spike Nitrite (N) 2023/11/20 NC % 80 - 120 9057794 C_N Spiked Blank Nitrite (N) 2023/11/20 91 % 80 - 120 9057794 C_N Method Blank Nitrite (N) 2023/11/20 <0.010				Dissolved Iron (Fe)	2023/11/20	0.41		%	20
Dissolved Manganese (Mn) 2023/11/20 0.26 % 20 Dissolved Potassium (K) 2023/11/20 0.35 % 20 Dissolved Sodium (Na) 2023/11/20 0.70 % 20 9057794 C_N Matrix Spike Nitrite (N) 2023/11/20 NC % 20 9057794 C_N Spiked Blank Nitrite (N) 2023/11/20 104 % 80 - 120 9057794 C_N Spiked Blank Nitrite (N) 2023/11/20 106 % 80 - 120 9057794 C_N Method Blank Nitrite (N) 2023/11/20 <0.010				Dissolved Magnesium (Mg)	2023/11/20	1.9		%	20
Dissolved Potassium (K) 2023/11/20 0.35 % 20 Dissolved Sodium (Na) 2023/11/20 0.70 % 20 9057794 C_N Matrix Spike Nitrite (N) 2023/11/20 NC % 80 - 120 9057794 C_N Spiked Blank Nitrite (N) 2023/11/20 104 % 80 - 120 9057794 C_N Spiked Blank Nitrite (N) 2023/11/20 90 92 % 80 - 120 9057794 C_N Spiked Blank Nitrite (N) 2023/11/20 <0.010				Dissolved Manganese (Mn)	2023/11/20	0.26		%	20
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Dissolved Potassium (K)	2023/11/20	0.35		%	20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				Dissolved Sodium (Na)	2023/11/20	0.70		%	20
9057794 C_N Matrix Spike Nitrite (N) 2023/11/20 104 % 80 - 120 9057794 C_N Spiked Blank Nitrite (N) 2023/11/20 91 % 80 - 120 9057794 C_N Spiked Blank Nitrite (N) 2023/11/20 92 % 80 - 120 9057794 C_N Method Blank Nitrite (N) 2023/11/20 <0.010				Dissolved Zinc (Zn)	2023/11/20	NC		%	20
Nitrate (N) 2023/11/20 91 % 80 - 120 9057794 C_N Spiked Blank Nitrite (N) 2023/11/20 106 % 80 - 120 9057794 C_N Method Blank Nitrite (N) 2023/11/20 92 % 80 - 120 9057794 C_N Method Blank Nitrite (N) 2023/11/20 <0.010	9057794	CΝ	Matrix Spike	Nitrite (N)	2023/11/20		104	%	80 - 120
9057794 C_N Spiked Blank Nitrite (N) 2023/11/20 106 % 80 - 120 9057794 C_N Method Blank Nitrite (N) 2023/11/20 <0.010		_		Nitrate (N)	2023/11/20		91	%	80 - 120
Nitrate (N) 2023/11/20 92 % 80 - 120 9057794 C_N Method Blank Nitrite (N) 2023/11/20 <0.010	9057794	CΝ	Spiked Blank	Nitrite (N)	2023/11/20		106	%	80 - 120
9057794 C_N Method Blank Nitrite (N) 2023/11/20 <0.010 mg/L 9057794 C_N RPD Nitrate (N) 2023/11/20 <0.10		-		Nitrate (N)	2023/11/20		92	%	80 - 120
Nitrate (N) 2023/11/20 <0.10 mg/L 9057794 C_N RPD Nitrate (N) 2023/11/20 NC % 20 9058055 NNA QC Standard Total BOD 2023/11/23 97 % 80 - 120 9058055 NNA Method Blank Total BOD 2023/11/23 <2	9057794	C_N	Method Blank	Nitrite (N)	2023/11/20	<0.010		mg/L	
9057794C_NRPDNitrate (N)2023/11/20NC%209058055NNAQC StandardTotal BOD2023/11/2397%80 - 1209058055NNAMethod BlankTotal BOD2023/11/23<2				Nitrate (N)	2023/11/20	<0.10		mg/L	
9058055 NNA QC Standard Total BOD 2023/11/23 97 % 80 - 120 9058055 NNA Method Blank Total BOD 2023/11/23 <2	9057794	CΝ	RPD	Nitrate (N)	2023/11/20	NC		%	20
9058055NNAMethod BlankTotal BOD2023/1/23<2mg/L9058055NNARPD [XPS249-04]Total BOD2023/11/23NC%309058744SAUSpiked BlankAlkalinity (Total as CaCO3)2023/11/2293%85 - 1159058744SAUMethod BlankAlkalinity (Total as CaCO3)2023/11/22<1.0	9058055	NNA	QC Standard	Total BOD	2023/11/23		97	%	80 - 120
9058055NNARPD [XPS249-04]Total BOD2023/11/23NC%309058744SAUSpiked BlankAlkalinity (Total as CaCO3)2023/11/2293%85 - 1159058744SAUMethod BlankAlkalinity (Total as CaCO3)2023/11/22<1.0	9058055	NNA	Method Blank	Total BOD	2023/11/23	<2		mg/L	
9058744SAUSpiked BlankAlkalinity (Total as CaCO3)2023/11/2293%85 - 1159058744SAUMethod BlankAlkalinity (Total as CaCO3)2023/11/22<1.0	9058055	NNA	RPD [XPS249-04]	Total BOD	2023/11/23	NC		%	30
9058744 SAU Method Blank Alkalinity (Total as CaCO3) 2023/11/22 <1.0 mg/L 9058744 SAU RPD Alkalinity (Total as CaCO3) 2023/11/22 2.6 % 20 9058757 ADB Matrix Spike Dissolved Chloride (Cl-) 2023/11/21 NC % 80 - 120 9058757 ADB Spiked Blank Dissolved Chloride (Cl-) 2023/11/21 95 % 80 - 120 9058757 ADB Method Blank Dissolved Chloride (Cl-) 2023/11/21 95 % 80 - 120 9058757 ADB Method Blank Dissolved Chloride (Cl-) 2023/11/21 <1.0	9058744	SAU	Spiked Blank	Alkalinity (Total as CaCO3)	2023/11/22		93	%	85 - 115
9058744SAURPDAlkalinity (Total as CaCO3)2023/11/222.6%209058757ADBMatrix SpikeDissolved Chloride (Cl-)2023/11/21NC%80 - 1209058757ADBSpiked BlankDissolved Chloride (Cl-)2023/11/2195%80 - 1209058757ADBMethod BlankDissolved Chloride (Cl-)2023/11/21<1.0	9058744	SAU	Method Blank	Alkalinity (Total as CaCO3)	2023/11/22	<1.0		mg/L	
9058757 ADB Matrix Spike Dissolved Chloride (Cl-) 2023/11/21 NC % 80 - 120 9058757 ADB Spiked Blank Dissolved Chloride (Cl-) 2023/11/21 95 % 80 - 120 9058757 ADB Method Blank Dissolved Chloride (Cl-) 2023/11/21 <1.0	9058744	SAU	RPD	Alkalinity (Total as CaCO3)	2023/11/22	2.6		%	20
9058757 ADB Spiked Blank Dissolved Chloride (Cl-) 2023/11/21 95 % 80 - 120 9058757 ADB Method Blank Dissolved Chloride (Cl-) 2023/11/21 <1.0	9058757	ADB	Matrix Spike	Dissolved Chloride (Cl-)	2023/11/21		NC	%	80 - 120
9058757 ADB Method Blank Dissolved Chloride (Cl-) 2023/11/21 <1.0 mg/L 9058757 ADB RPD Dissolved Chloride (Cl-) 2023/11/21 0.094 % 20 9058760 ADB Matrix Spike Dissolved Sulphate (SO4) 2023/11/21 NC % 75 - 125	9058757	ADB	Spiked Blank	Dissolved Chloride (Cl-)	2023/11/21		95	%	80 - 120
9058757 ADB RPD Dissolved Chloride (Cl-) 2023/11/21 0.094 % 20 9058760 ADB Matrix Spike Dissolved Sulphate (SO4) 2023/11/21 NC % 75 - 125	9058757	ADB	Method Blank	Dissolved Chloride (Cl-)	2023/11/21	<1.0		mg/L	
9058760 ADB Matrix Spike Dissolved Sulphate (SO4) 2023/11/21 NC % 75 - 125	9058757	ADB	RPD	Dissolved Chloride (Cl-)	2023/11/21	0.094		%	20
	9058760	ADB	Matrix Spike	Dissolved Sulphate (SO4)	2023/11/21		NC	%	75 - 125

Page 12 of 16

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9058760	ADB	Spiked Blank	Dissolved Sulphate (SO4)	2023/11/21		96	%	80 - 120
9058760	ADB	Method Blank	Dissolved Sulphate (SO4)	2023/11/21	<1.0		mg/L	
9058760	ADB	RPD	Dissolved Sulphate (SO4)	2023/11/21	0.44		%	20
9059239	RTB	Spiked Blank	Total Dissolved Solids	2023/11/21		100	%	80 - 120
9059239	RTB	Method Blank	Total Dissolved Solids	2023/11/21	<10		mg/L	
9059239	RTB	RPD [XPS246-02]	Total Dissolved Solids	2023/11/21	3.5		%	20
9061628	AFZ	Matrix Spike	Total Arsenic (As)	2023/11/21		99	%	80 - 120
			Total Barium (Ba)	2023/11/21		94	%	80 - 120
			Total Boron (B)	2023/11/21		101	%	80 - 120
			Total Cadmium (Cd)	2023/11/21		98	%	80 - 120
			Total Chromium (Cr)	2023/11/21		96	%	80 - 120
			Total Copper (Cu)	2023/11/21		95	%	80 - 120
			Total Iron (Fe)	2023/11/21		97	%	80 - 120
			Total Lead (Pb)	2023/11/21		99	%	80 - 120
			Total Zinc (Zn)	2023/11/21		101	%	80 - 120
9061628	AFZ	Spiked Blank	Total Arsenic (As)	2023/11/21		102	%	80 - 120
			Total Barium (Ba)	2023/11/21		96	%	80 - 120
			Total Boron (B)	2023/11/21		104	%	80 - 120
			Total Cadmium (Cd)	2023/11/21		100	%	80 - 120
			Total Chromium (Cr)	2023/11/21		98	%	80 - 120
			Total Copper (Cu)	2023/11/21		97	%	80 - 120
			Total Iron (Fe)	2023/11/21		100	%	80 - 120
			Total Lead (Pb)	2023/11/21		100	%	80 - 120
			Total Zinc (Zn)	2023/11/21		105	%	80 - 120
9061628	AFZ	Method Blank	Total Arsenic (As)	2023/11/21	<0.0010		mg/L	
			Total Barium (Ba)	2023/11/21	<0.0020		mg/L	
			Total Boron (B)	2023/11/21	<0.010		mg/L	
			Total Cadmium (Cd)	2023/11/21	<0.000090		mg/L	
			Total Chromium (Cr)	2023/11/21	<0.0050		mg/L	
			Total Copper (Cu)	2023/11/21	<0.00090		mg/L	
			Total Iron (Fe)	2023/11/21	<0.010		mg/L	
			Total Lead (Pb)	2023/11/21	<0.00050		mg/L	
			Total Zinc (Zn)	2023/11/21	<0.0050		mg/L	
9061628	AFZ	RPD	Total Arsenic (As)	2023/11/21	NC		%	20
			Total Barium (Ba)	2023/11/21	NC		%	20
			Total Boron (B)	2023/11/21	1.2		%	20
			Total Cadmium (Cd)	2023/11/21	NC		%	20
			Total Chromium (Cr)	2023/11/21	NC		%	20
			Total Copper (Cu)	2023/11/21	NC		%	20
			Total Iron (Fe)	2023/11/21	NC		%	20
			Total Lead (Pb)	2023/11/21	NC		%	20

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
		Total Zinc (Zn)	2023/11/21	NC		%	20
Duplicate: Paired	d analysis of a separate por	tion of the same sample. Used to eva	aluate the variance in the measuren	nent.			
Matrix Spike: A s	ample to which a known a	mount of the analyte of interest has	been added. Used to evaluate samp	ole matrix inte	rference.		
QC Standard: A s	ample of known concentra	tion prepared by an external agency	under stringent conditions. Used a	s an independ	ent check of me	thod accur	асу.
Spiked Blank: A b	lank matrix sample to whic	ch a known amount of the analyte, us	sually from a second source, has been	en added. Use	d to evaluate me	ethod accu	racy.
Method Blank: A	blank matrix containing al	l reagents used in the analytical proc	edure. Used to identify laboratory o	contamination	l.		
NC (Matrix Spike) was too small to): The recovery in the matri permit a reliable recovery (x spike was not calculated. The relat calculation (matrix spike concentratio	ive difference between the concent in was less than the native sample c	ration in the p oncentration)	arent sample an	d the spike	amount
NC (Duplicate RP difference <= 2x	D): The duplicate RPD was RDL).	not calculated. The concentration in	the sample and/or duplicate was to	o low to perm	it a reliable RPD	calculation	(absolute

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Description Description Product information Prod			Bureau Veri 16740 Camp	itas bello Road, Mi	ississauga, Oni	tario Canada I	L5N 2L8	3 Tel:(905) 817-5;	700 Toll-free:800)-563-6266 Fax:(905) 817-	5777 www	v.bv∩a.com							CHAIN	I OF CUS				Page 1	of 1
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>				ligant				· · ·								880 150						337.24			. *	
Oppose in an 260 BMD (minimum minimum m	-	#705_01	NVOICE TO:	1					REPO	DRT TO:		i			50 50	PROJEC	INFOR	MATION:								
Aller Construit Sector Description Aller Construit Description Description <thdescription< th=""></thdescription<>	Com	pany Name: #125 Story En	vironmental	Inc		Co	mpany N	Name:	Dugallari					Quotation	1#:	C3022	21			-		日和高	i			
Addexity Material Material <th< td=""><td>Atler</td><td>tion: Central Account</td><td>DO Poy 7</td><td>10</td><td></td><td>Atte</td><td>ention:</td><td>Beata</td><td>stabley</td><td></td><td></td><td></td><td></td><td>P.O. #:</td><td></td><td>040.00</td><td></td><td></td><td></td><td></td><td>. 1</td><td>NONT-2023-11-</td><td>849</td><td></td><td></td><td></td></th<>	Atler	tion: Central Account	DO Poy 7	10		Atte	ention:	Beata	stabley					P.O. #:		040.00					. 1	NONT-2023-11-	849			
Image by the number of the second s	Addr	ess: 352 Main Street	P.U. BUX /	10		Ade	dress:		9. 					Project:		048-02	2-33									
The		Traileybury ON	-03 110	(705	1670 2005									Project N	ame:	Ciele	a u al filt								<u></u>	
Cardinal Control Contro Control Control	Tel:		nionvironm	Fax: (705	012-3323	Tel	Ŀ	hasts b	and law @atas	Fax:	(a)	-1		Site #:		SISK L	anatili							Ka	therine Szc	zda
No.volume No.volume <t< td=""><td>Ema</td><td></td><td>ryenvironna</td><td>ental.com,p</td><td>eata.braule</td><td>y@st Em</td><td>nail:</td><td>Deala,c</td><td>radiey@stor</td><td>yenvironmen</td><td>tal.com</td><td>stepna</td><td>nie.derui</td><td>Sampled</td><td>By:</td><td></td><td></td><td></td><td></td><td></td><td></td><td>C#951691-01-01</td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td><td></td></t<>	Ema		ryenvironna	ental.com,p	eata.braule	y@st Em	nail:	Deala,c	radiey@stor	yenvironmen	tal.com	stepna	nie.derui	Sampled	By:							C#951691-01-01	· · · · · · · · · · · · · · · · · · ·			
Bits Bits <th< td=""><td>й.,</td><td>MOE REGULATED DRINKIN</td><td></td><td>OR WATER I</td><td>NTENDED</td><td>FOR HUMA</td><td>AN CO</td><td>NSUMPTION</td><td>MUST BE</td><td></td><td></td><td></td><td>AN/</td><td>ALYSIS RE</td><td>QUESTED</td><td>D (PLEASE B</td><td>E SPECI</td><td>FIC)</td><td></td><td>1</td><td></td><td>Turnaround Please provide adv</td><td>Time (TAT) R</td><td>equired:</td><td>ante</td><td></td></th<>	й.,	MOE REGULATED DRINKIN		OR WATER I	NTENDED	FOR HUMA	AN CO	NSUMPTION	MUST BE				AN/	ALYSIS RE	QUESTED	D (PLEASE B	E SPECI	FIC)		1		Turnaround Please provide adv	Time (TAT) R	equired:	ante	
Bit data Control Special instruction Special instructinstestestestestestestestesteste		SODWITTED ON			DRINKING	WATER OF		F C0310D1	a a a a a	(e)		rater									Regular (S	Standard) TAT:	and notice it	, rus rpro	3010	
Image: Image:<		Regulation 153 (2011)		Oth	ner Regulation	6		Special In	structions		face	ýpur									(will be applied	ed if Rush TAT is not spec	lfied):			N
Implicition	LT	able 1 🔄 Res/Park 🛄 Mediu	im/Fine	CME	Sanitary Sewe	r Bylaw			5	N C ISE	-Su	Grot									Standard TA	T = 6-7 Working days for i	nost tests			
Image Image <td< td=""><td></td><td>able 2 Ind/Comm. Coars</td><td></td><td>eg 558.</td><td>Storm Sewer B</td><td>lylaw</td><td></td><td></td><td></td><td>g / C</td><td>33)</td><td>- (6</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Please note:</td><td>Standard TAT for certain</td><td>iests such as B</td><td>OD and Did</td><td>xins/Furans</td><td>are > 5</td></td<>		able 2 Ind/Comm. Coars		eg 558.	Storm Sewer B	lylaw				g / C	33)	- (6									Please note:	Standard TAT for certain	iests such as B	OD and Did	xins/Furans	are > 5
Lamm	H"	able 3Agri/OtherFor H		IISA Mui	nicipality		-			De H	202	53									days - contac	n your Project Manager io	r oətalis,			
Include Circle Conduction Description Description <thdescripti< td=""><td></td><td></td><td></td><td>woo []</td><td>Reg 405 Tabl</td><td>•</td><td>-1</td><td></td><td></td><td>te la</td><td>60</td><td>(04</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Job Specifi</td><td>ic Rush TAT (if applies :</td><td>to entire subn</td><td>lission)</td><td>4</td><td></td></thdescripti<>				woo []	Reg 405 Tabl	•	-1			te la	60	(04									Job Specifi	ic Rush TAT (if applies :	to entire subn	lission)	4	
Include Charles of Charles of Analysis (VM)? Image: Construction of Charles of Analysis (VM)? Image: Construction of Charles of Chard of Chard of Charles of Charles of Charles of Charles of Charle		a a <u>a constan</u>		uiei						E S	odfill	lihbr									Rush Confirm	nation Number:		le Requirer	•	
Sample Borode Label Sample Borode Label Date Sample Mark Mark B		Include Criter	ia on Certifica	ate of Analys	sis (Y/N)?				5	- Liel	k La	kLa											(0	all lab for #,		
1 MW01 H Nov23 II: 20 GW Y X III III: 20 GW Y X III: 20 GW Y X <td></td> <td>Sample Barcode Label</td> <td>Sample (</td> <td>(Location) Ident</td> <td>tification</td> <td>Date Samp</td> <td>oleci</td> <td>Time Sampled</td> <td>Matrix</td> <td></td> <td>Sis</td> <td>Sist</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td># of Bottles</td> <td></td> <td>Comm</td> <td>ents</td> <td></td> <td></td>		Sample Barcode Label	Sample ((Location) Ident	tification	Date Samp	oleci	Time Sampled	Matrix		Sis	Sist									# of Bottles		Comm	ents		
2 MW02 IH Nov 23 II: 45 GW Y X III:	1			MW01		14 Novi	23	11:20	GW	Y		. ×							12 2470	D 201 00 -						
3 MW03 H/Nov 23 12:15 G/W Y X Image: Constraint of the c	2			MW02		H Nov	2.3	11:45	GW	Y		x					1									
4 MW04 H4 Nov 23 12:50 G/N Y X Image: Construction of the second seco	3			MW03		14 Nov 2	23	12:15	GW	У		x														
6 SW01 H1 Nw 23 Sw N x 6 Y1 H4 Nw 23 Gw Y x 7 Gw Y x Gw Y 8 Gw Y x Gw Y 9 Gw Y X Gw Y 10 Time RECENCED BY: (Signature/Print) Date: (YYMMIDD) Time 10 Gw Y X Gw Y 10 Gw Y X Gw Y 10 Gw Gw Y X Gw 10 Gw Gw Gw Gw Y 11 H1 Go Gw J J Gw Gw 10 Gw J J Gw Gw 10 Gw J J J Gw J 11 H1 Go Gw J J J J J J 11 H1 Go J J J J J J J 11 H1 Go J J J J J J J 11 H1 Go J J J J J J J	4			MW04		14 Nov 2	23	12:50	GW	Y		x	-		-							14				
Strict [*] N.W. 2.3 S.W. [*] N. M. 2.3 [*] N. M. 2.	5			SW01	and the second	IEL A.		12. 50	<u>.</u>	- '	~														2	
6 Y1 IM Nov 23 GW Y X Image: Construct of the second sec						["INW 2"	's		214	14	^															
7	6			¥1		14 Nov :	23		GW	<u>,</u>		×														
8 Image: State of the second seco	7																									
8 10 10 * RELINQUISHED BY: (Signature/Print) Date: (YYMM/DD) Time # jars used and not submitted 10 * RELINQUISHED BY: (Signature/Print) Date: (YYMM/DD) Time # jars used and not submitted 10 * RELINQUISHED BY: (Signature/Print) Date: (YYMM/DD) Time # jars used and not submitted 10 * UNLESS OTHERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTODY IS SUBJECT TO BUREAU VERITAS'S STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTODY DOCUMENT IS ACKNOWLEDGENERT AND ACCOMENTAL-LABORATORIESARESOURCES/COS-CHINGS-AND-CONDITIONS. Time Sensitive Tamperature (*CL,on Receil Present intact) * UNLESS OTHERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTODY IS SUBJECT TO BUREAU VERITAS'S STANDARD TERMS AND CONDITIONS. Signing OF THIS CHAIN OF CUSTODY DOCUMENT IS ACKNOWLEDGENGENT AND ACCOMENTAL-LABORATORIESARESOURCES/COS-CHINGS. Signing OF THIS CHAIN OF CUSTODY DOCUMENT IS ACKNOWLEDGENGENT AND ACCOMENTAL-LABORATORIESARESOURCES/COS-CHINGS. SAMPLES MUST BE KEPT COOL (< 10° C) FROM TIME OF SAMPLING	8			<u>n</u>		32 444		2002.001											2							
10 * RELINQUISHED BY: (Signature/Print) Date: (YY/MWDD) Time RECEIVED BY: (Signature/Print) Date: (YY/MWDD) Time Laboratory Use Only 11 0 Y Y Y IS Nov Z 3 14' cd Remut RAWSET KAUR BEAR 908'3'N 16. 0'8 c. 5'8 Time Sensitive Time Sensitive Time Sensitive Time Sensitive Time Sensitive Custody Seal Yes * UNLESS OTHERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTODY IS SUBJECT TO BUREAU VERITAS'S STANDARD TERMS AND CONDITIONS. Signing OF This Chain OF CUSTODY DOCUMENT IS Signing OF This Chain OF CUSTODY DOCUMENT IS * UNLESS OTHERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTODY IS SUBJECT TO BUREAU VERITAS'S STANDARD TERMS AND CONDITIONS. Signing OF This Chain OF CUSTODY DOCUMENT AS ACCOMENTACHABLE FOR VIEWING AT WWWBURNAL ALBORATORIES/RESOURCES/COG-TERMS-AND-CONDITIONS. Signing OF This Chain OF CUSTODY DOCUMENT IS * IT IS THE RESPONSIBILITY OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY RECORD. AN INCOMPLETE CHAIN OF CUSTODY MAY RESOULT IN ANALYTICAL TAT DELAYS. SAMPLES MUST BE KEPF COOL (< 10° C) FROM TIME OF SAMPLING	9																				-					
Class of the synthese the course of the synthese the synthese the course of the synthese the synthese the course of the synt	10	<u></u>													-								 .			
Is No v 2.3 14:00 Represent the construction of custody seal verifies and conditions. Signing of this chain of custody document is acknowledgement and acceptance of our terms which are available for viewno at www.evan.comenvironmental-Laboratories/resources/coc-terms.and.complitions. Signing of this chain of custody document is acceptance of our terms which are available for viewno at www.evan.comenvironmental-Laboratories/resources/coc-terms.and.complitions. Signing of this chain of custody document is acceptance of our terms which are available for viewno at www.evan.com/environmental-Laboratories/resources/coc-terms.and.complitions. Signing of the relinquisher to ensure the accuracy of the chain of custody necord. An incomplete chain of custody may resource in analytical tat delays.	l	* RELINQUISHED BY: (S	ignature/Print)		Date: (YY/N	IM/DD)	Time	ə	RECEIVED	I BY: (Signature/P	rint)	L T	Date: (YY/	(M/DD)	т	1 ime	# jars	used and		1	Labora	I atory Use Only				· · ·
		Lillion Minut	11. 14		IS Acar	221	4:01	Rom	ant PANTA	GT KANO	0.00	e.	903211	116	0	81 (4	nots	ubmitted	Time	Sensitive	Tomport	(IFO /RC) on Board	Custody S	al	Yes	No
* UNLESS OTHERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTODY IS SUBJECT TO BUREAU VERITAS'S STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTODY DOCUMENT IS ACKNOWLEDGMENT AND ACCEPTANCE OF OUR TERMS WHICH ARE AVAILABLE FOR VIEWING AT WWW.BVINA.COM/ENVIRONMENTAL-LABORATORIES/RESOURCES/COC-TERMS-AND-CONDITIONS. * IT IS THE RESPONSIBILITY OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY RECORD. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS.	$ \rightarrow $	U U	4 WX XV			<u></u>	, 00	- NWM	LOV KTIVIV	VU WINK	-OKP	N C	KNA 11	110		0 4 2 0	-				remperat		Present			
* SAMPLE CONTAINER, PRESERVATION, HOLD TIME AND PACKAGE INFORMATION CAN BE VIEWED AT WWW.BVNA.COM/ENVIRONMENTAL-LABORATORIES/RESOURCES/CHAIN-CUSTODY-FORMS-COCS.	* UNLI ACKN * IT IS	ESS OTHERWISE AGREED TO IN W IOWLEDGMENT AND ACCEPTANCE THE RESPONSIBILITY OF THE REL MPLE CONTAINER, PRESERVATION	RITING, WORK S OF OUR TERMS INQUISHER TO , HOLD TIME AN	SUBMITTED ON S WHICH ARE A ENSURE THE /	L N THIS CHAIN O VAILABLE FOR ACCURACY OF NFORMATION (F CUSTODY VIEWING AT THE CHAIN O	IS SUBJ WWW.B DF CUST	J JECT TO BUREAU BVNA.COM/ENVIR TODY RECORD. A	VERITAS'S STAN ONMENTAL-LAB N INCOMPLETE ENVIRONMENTA	IDARD TERMS AN ORATORIES/RES CHAIN OF CUSTO L-LABORATORIE	ND CONDI OURCES/ DDY MAY F	TIONS. S COG-TER ESULT II	IGNING OF T MS-AND-CO N ANALYTIC AIN-CUSTOR	HIS CHAIN NDITIONS. AL TAT DE	L NOF CUST	ODY DOCUM	ENT IS	SAMPLE	S MUST B UN	E KEPT CO TIL DELIVE	OL (< 10° C) I RY TO BUREA	FROM TIME OF SAMPL	White: I	Bureau Ve	itas Yello	l w: Client

Appendix D

Groundwater Chemistry

Table D.1 MW1 Analytical Data 2001-2023

	Sample II	D											N	IW1											
Parameter	Units	05 Jul 2001	16 Oct 2008	3 14 Jul 2009	20 Oct 2009	15 Jun 2010	14 Oct 2010	22 Jun 2011	27 Oct 2011	09 Jun 2016	26 Oct 2016	12 Jul 2017	05 Oct 2017	24 Jul 2018	12 Oct 2018	19 Jun 2019	10 Oct 2019	17 Jun 2020	24 Sep 2020	10 Jun 2021	27 Sep 2021	15 Jun 2022	08 Nov 2022	26 Apr 2023	14 Nov 2023
Conductivity Field	µS/cm	-	859	1216	1236	1167	1183	1232	505	1285	1132	1318	1448	1445	741	1022	1204	1295	1198	1242	900	1029	1020	816.7	1669
Dissolved Oxygen Field	mg/L	-	2.7	2.7	2.6	3.5	2.7	2.6	5.4	3.4	4.4	5.3	4.8	2.5	2.3	3.4	5.9	2.0	2.1	2.6	2.4	3.3	6.5	5.7	5.3
ORP Field	mV	-	-	-	-	-	-	-	-	-49	-12	-37	-62	-46	-26	-	-57	-	-23.1	-73	-56	-75	-48	-41	-39
pH Field	s.u.	-	7.1	6.8	6.9	7	6.9	7.3	7.1	6.8	6.8	6.5	6.7	7.4	6.7	6.8	6.9	6.8	7	6.8	6.5	6.8	6.8	7.0	6.8
Temperature Field	°C	-	9.7	9.9	9.6	8.3	9.8	8	9.2	7.1	9.9	9	10	9.1	9.8	7	9.7	6.5	9.9	6.7	11	7.3	8.3	3.3	8.2
Total Alkalinity (as CaCO3)	mg/L	553	563	622	695	611	622	669	300	580	520	630	680	660	410	530	620	590	580	640	420	530	460	590	530
Total Ammonia (as N)	mg/L	< 0.03	0.11	0.15	0.13	0.07	0.06	-	< 0.05	1.8	1.6	3.3	4	4.2	1.2	3.8	6	4.1	2.8	3.3	2.8	3.1	3.4	2.9	4.7
Biological Oxygen Demand	mg/L	-	< 2	4	< 2	5	5	5	< 2	-	-	-	-	-	-	-	-	-	-	-	-	< 2	3	< 2	3
Chloride	mg/L	18.4	13	11	11	25	25	15	7	55	38	55	63	42	25	16	32	32	34	22	15	16	14	10	21
Dissolved Organic Carbon	mg/L	11	10	12	12	12	11	11	11	11	10	13	15	10	10	8.1	11	11	9.9	7.8	9.3	9.1	10	7.5	9.9
Hardness (as CaCO3)	mg/L	516	500	610	670	690	650	680	330	540	480	600	640	610	340	600	580	650	590	600	440	580	530	530	570
Nitrate (as N)	mg/L	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.10	< 0.10
Nitrate + Nitrite (as N)	mg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.10	< 0.10
Nitrite (as N)	mg/L	< 0.2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.010	< 0.010
Organic Nitrogen (Calculated)	mg/L	-	1.19	1.55	0.97	1.23	1.14	-	0.9	0.6	0.7	0.9	0.5	0.8	0.2	0.6	0.6	1.2	0.5	0.2	0.5	0.6	0.50	1	0.3
Phosphorus	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.44	0.12	0.34	0.04
Sulphate	mg/L	30	19	26	21	20	14	1	5	63	45	38	45	45	25	27	35	66	73	35	31	11	14	4.6	11
Total Dissolved Solids	mg/L	623	590	750	785	750	740	747	360	858	638	784	905	835	500	760	600	815	825	970	540	645	565	355	700
Total Kjeldahl Nitrogen	mg/L	-	1.3	1.7	1.1	1.3	1.2	-	0.9	2.4	2.3	4.2	4.5	5	1.4	4.4	6.6	5.3	3.3	3.5	3.3	3.7	3.9	3.9	5
Arsenic	mg/L	-	0.002	0.004	0.004	0.005	0.005	0.005	0.004	0.004	0.011	0.012	0.03	0.002	0.005	0.009	0.021	0.011	0.015	0.011	0.017	0.014	0.025	0.0078	0.015
Dissolved Barium	mg/L	0.084	0.071	0.098	0.1	0.095	0.097	0.11	0.045	0.17	0.16	0.22	0.23	0.14	0.1	0.2	0.26	0.24	0.25	0.19	0.2	0.2	0.22	0.16	0.23
Dissolved Boron	mg/L	0.28	0.48	0.6	0.65	0.4	0.43	0.52	0.22	0.86	0.74	0.88	1.1	0.88	0.42	0.93	1.1	1.1	1.2	0.87	0.92	1.1	1.2	0.73	1.1
Dissolved Cadmium	mg/L	< 0.005	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.00011	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.000090	< 0.000090
Dissolved Calcium	mg/L	174	170	210	230	240	230	240	120	190	170	210	220	210	120	210	200	230	210	210	150	200	180	170	190
Dissolved Chromium	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.0050	< 0.0050
Dissolved Copper	mg/L	0.014	0.003	0.004	0.004	0.005	0.005	0.006	0.011	0.002	0.002	0.002	0.002	0.001	0.003	0.002	< 0.001	0.002	0.002	0.001	0.001	0.001	0.007	0.0023	0.0021
Dissolved Iron	mg/L	0.1	0.6	1	1.3	2	1.3	2	0.3	26	25	35	44	0.6	5.1	26	38	35	39	31	32	28	32	9.7	21
Dissolved Lead	mg/L	< 0.001	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.00050	< 0.00050
Dissolved Magnesium	mg/L	20	15	18	20	22	21	21	9.5	17	14	20	20	20	12	18	20	20	18	18	13	20	18	23	22
Dissolved Manganese	mg/L	6	3.2	3.6	3.6	3.8	3.2	3.7	0.79	1.6	1.8	1.5	1.5	1.5	0.59	1.3	1.2	1.4	1.2	1.4	0.84	1.1	0.91	0.67	0.97
Dissolved Potassium	mg/L	3	5.6	6.4	6.7	7.2	5.9	6.6	3	11	10	13	15	14	3.4	11	15	14	13	12	10	11	14	8	12
Dissolved Sodium	mg/L	22.6	16	21	22	13	16	21	10	71	58	61	88	45	24	38	54	42	53	24	28	33	49	29	39
Dissolved Zinc	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.0050	< 0.0050
Notes:																									

1. "-" = data is not available

Source:

Table D.2 MW2 Analytical Data 2001-2023

	Sample	ID											M	IW2											
arameter	Units	05 Jul 2001	16 Oct 2008	3 14 Jul 2009	20 Oct 2009	15 Jun 2010	14 Oct 2010	22 Jun 2011	27 Oct 2011	09 Jun 2016	26 Oct 2016	12 Jul 2017	05 Oct 2017	24 Jul 2018	12 Oct 2018	19 Jun 2019	10 Oct 2019	17 Jun 2020	24 Sep 2020	10 Jun 2021	27 Sep 2021	15 Jun 2022	08 Nov 2022	26 Apr 2023	14 Nov 2023
Conductivity Field	µS/cm	-	493	458	613	347	544	442	480	306	369	408	236	318	331	314	261	310	274	325	251	376	273	252.9	291.3
Dissolved Oxygen Field	mg/L	-	2.2	2.7	2.9	3.0	2.6	3.1	4.0	0.4	0.3	0.4	0.5	0.3	0.2	0.2	0.4	0.3	0.4	2.0	2.4	2.0	5.7	3.6	4.1
ORP Field	mV	-	-	-	-	-	-	-	-	-19	68	-10	22	19	15	-	41	-	38	-13	99	-21	41	-13	-43
pH Field	s.u.	-	6.7	6.7	6.8	6.8	6.4	6.5	6.2	6.5	6.1	6.3	5.9	7.1	6.1	6.4	5.9	6.4	6.4	6.3	5.6	6.4	6.0	6.7	6.3
Temperature Field	°C	-	8.7	7.2	8.6	6.6	9.4	7	9	5.5	8.7	6.9	8.7	7.2	9	6.1	9	6	8.8	5.9	9.4	6.1	8	4.3	8
Total Alkalinity (as CaCO3)	mg/L	264	243	196	278	152	247	201	128	150	140	190	110	150	130	160	100	160	120	150	89	180	110	120	140
Total Ammonia (as N)	mg/L	1.89	1.4	0.83	0.84	1.1	1.4	-	1	0.51	0.68	0.46	3.5	1	0.31	0.29	1.1	0.31	0.48	0.32	0.31	0.28	0.25	0.18	0.25
Biological Oxygen Demand	mg/L	-	7	9	12	8	7	2	4	-	-	-	-	-	-	-	-	-	-	-	-	< 2	< 2	< 2	< 2
Chloride	mg/L	3.1	2	< 30	2	2	2	2	2	< 1	1.1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	2.3	< 1	1.7	1.5	< 1.0	< 1.0
Dissolved Organic Carbon	mg/L	34	15	12	11	14	13	12	15	9.8	11	7.7	23	15	17	13	19	13	20	9.4	17	9.9	18	12	14
Hardness (as CaCO3)	mg/L	224	190	170	270	160	240	200	210	140	180	180	87	140	140	160	120	150	130	150	120	190	130	120	140
Nitrate (as N)	mg/L	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.10	< 0.10
Nitrate + Nitrite (as N)	mg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.10	< 0.10
Nitrite (as N)	mg/L	< 0.2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.010	< 0.010
Organic Nitrogen (Calculated)	mg/L	-	1.3	1.17	0.66	0.9	1.4	-	1.1	0.39	0.32	0.34	0.5	0.3	0.19	0.21	0.4	0.29	0.42	0.18	0.39	0.22	0.45	0.34	0.2
Phosphorus	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.054	0.18	0.029	0.15
Sulphate	mg/L	7	< 1	< 30	< 1	< 1	14	2	81	< 1	50	< 1	< 1	< 1	26	< 1	16	< 1	8	< 1	31	< 1	18	3.2	1.7
Total Dissolved Solids	mg/L	277	240	240	340	204	346	239	284	172	232	214	240	210	220	230	170	215	195	180	165	230	185	120	165
Total Kjeldahl Nitrogen	mg/L	-	2.7	2	1.5	2	2.8	-	2.1	0.9	1	0.8	4	1.3	0.5	0.5	1.5	0.6	0.9	0.5	0.7	0.5	0.7	0.52	0.45
Arsenic	mg/L	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.001	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001	0.005	< 0.001	0.003	< 0.0010	< 0.0010
Dissolved Barium	mg/L	0.047	0.049	0.053	0.093	0.046	0.08	0.061	0.082	0.048	0.069	0.06	0.043	0.05	0.051	0.057	0.051	0.053	0.054	0.054	0.053	0.061	0.049	0.037	0.045
Dissolved Boron	mg/L	0.51	0.42	0.46	0.49	0.32	0.71	0.57	1	0.28	0.69	0.38	0.88	0.58	0.44	0.31	0.79	0.29	0.57	0.29	0.62	0.32	0.48	0.22	0.38
Dissolved Cadmium	mg/L	< 0.005	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.000090	< 0.000090
Dissolved Calcium	mg/L	60.1	56	52	85	51	77	65	68	47	62	61	24	47	49	56	40	52	46	51	40	65	45	43	49
Dissolved Chromium	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.0050	< 0.0050
Dissolved Copper	mg/L	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.001	0.001	< 0.0009	< 0.0009	0.001	0.002	0.001	0.008	0.0036	< 0.00090
Dissolved Iron	mg/L	30	19	17	23	16	19	16	20	12	6.3	22	8.4	12	12	12	7.4	9.8	7.4	10	2.5	12	7.3	2.4	5.4
Dissolved Lead	mg/L	< 0.001	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0005	< 0.00050	< 0.00050
Dissolved Magnesium	mg/L	18	12	9.2	14	7.5	11	10	10	5.2	6.4	6.7	6.5	5.3	5.1	5.2	5	5	4.7	4.8	3.9	6.2	4.4	3.9	4.1
Dissolved Manganese	mg/L	0.952	0.33	0.33	0.45	0.26	0.44	0.29	0.46	0.2	0.26	0.22	0.15	0.17	0.26	0.2	0.23	0.18	0.22	0.22	0.25	0.24	0.28	0.13	0.22
Dissolved Potassium	mg/L	5	2.5	3	3.7	3	3.6	3.3	3.6	1.2	1.6	1.3	2.9	1.2	1	0.8	1.3	0.6	1	0.6	0.7	0.6	0.8	0.44	0.4
Dissolved Sodium	mg/L	13.7	6.4	4.8	6.1	3.1	6	5.4	5.4	2.5	2.6	2.7	5.3	3.4	2.7	2.2	2.7	2.1	2.4	2.1	2.1	2.6	2.9	3.1	2.3
Dissolved Zinc	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.028	< 0.005	0.062	< 0.005	< 0.005	0.006	0.01	< 0.005	0.007	< 0.005	< 0.005	< 0.005	0.29	< 0.005	0.019	0.19	< 0.0050
Notes:																									

Notes: 1. "-" = data is not available

Source:

Table D.3 MW3 Analytical Data 2001-2023

	Sample	ID											N	IW3											
Parameter	Units	05 Jul 2001	16 Oct 2008	14 Jul 2009	20 Oct 2009	15 Jun 2010	14 Oct 2010	22 Jun 2011	27 Oct 2011	09 Jun 2016	26 Oct 2016	12 Jul 2017	05 Oct 2017	24 Jul 2018	12 Oct 2018	19 Jun 2019	10 Oct 2019	17 Jun 2020	24 Sep 2020	10 Jun 2021	27 Sep 2021	15 Jun 2022	08 Nov 2022	26 Apr 2023	14 Nov 2023
Conductivity Field	µS/cm	-	137	134	161	92	100	131	100	137	91	150	68	90	301	143	159	158	243	115	196	252	234	173	281
Dissolved Oxygen Field	mg/L	-	3.8	3.6	4.2	3.6	4.0	4.8	6.1	6.7	6.9	5.9	6.0	7.1	6.4	7.5	7.8	5.6	6.4	5.8	6.8	8.1	9.6	11.1	9.4
ORP Field	mV	-	-	-	-	-	-	-	-	42	78	25	62	34	23	-	37	-	51	21	40	9	66	22	34
pH Field	s.u.	-	7.7	7	6.9	6.8	6.6	6.8	6.5	6.7	6.9	5.9	6	7.5	7	6.8	6.7	7	7.6	6.4	6.5	6.9	6.7	7.3	7.1
Temperature Field	°C	-	8.5	7.5	8.8	7.4	8.9	6.8	8.6	5.8	8.5	7.5	8.7	8.8	9.6	6.1	9	6.3	9.8	6.9	9.8	6.2	8	3.7	8.3
Total Alkalinity (as CaCO3)	mg/L	114	63	66	84	42	44	68	45	76	35	72	27	27	150	74	73	80	130	51	100	120	99	89	130
Total Ammonia (as N)	mg/L	0.06	0.1	0.11	0.09	0.11	0.21	-	0.16	< 0.05	0.22	0.1	0.28	0.21	0.11	< 0.05	0.17	< 0.05	0.06	0.21	0.11	< 0.05	0.12	< 0.050	< 0.050
Biological Oxygen Demand	mg/L	-	< 2	< 2	< 2	< 2	< 2	< 2	< 2	-	-	-	-	-	-	-	-	-	-	-	-	< 2	< 2	< 2	< 2
Chloride	mg/L	< 0.5	< 5	< 10	2	1	1	< 1	1	< 1	< 1	< 1	< 1	< 1	3	< 1	< 1	< 1	< 1	1.5	< 1	1.3	1.8	< 1.0	< 1.0
Dissolved Organic Carbon	mg/L	16	19	12	12	18	18	8.9	18	5.5	17	11	27	25	3.8	4.7	13	6.5	7.5	20	15	3.6	14	3.2	3.9
Hardness (as CaCO3)	mg/L	105	72	66	86	48	42	71	46	76	51	71	30	27	150	75	65	78	120	47	85	120	99	86	150
Nitrate (as N)	mg/L	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	0.1	< 0.1	0.2	< 0.1	< 0.5	< 0.1	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.10	< 0.10
Nitrate + Nitrite (as N)	mg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	0.1	< 0.1	0.2	< 0.1	< 0.5	< 0.1	< 0.5	< 0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.10	< 0.10
Nitrite (as N)	mg/L	< 0.2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.05	< 0.01	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.010	< 0.010
Organic Nitrogen (Calculated)	mg/L	-	1.90	2.09	0.51	0.79	0.99	-	1.24	0.28	0.48	0.20	0.32	0.29	-0.01	0.18	0.03	0.18	0.14	0.19	0.19	0.08	0.18	0.11	0.12
Phosphorus	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.023	0.017	0.028	0.025
Sulphate	mg/L	3	< 5	< 10	< 1	< 1	< 1	< 1	< 1	2	< 1	2	< 1	< 1	2	2	< 1	1	2	< 1	< 1	< 1	< 1	2.5	2.4
Total Dissolved Solids	mg/L	118	80	81	105	56	70	77	59	66	98	90	135	80	155	95	120	135	145	50	125	175	120	85	140
Total Kjeldahl Nitrogen	mg/L	-	2	2.2	0.6	0.9	1.2	-	1.4	0.3	0.7	0.3	0.6	0.5	0.1	0.2	0.2	0.2	0.2	0.4	0.3	0.1	0.3	0.13	0.14
Arsenic	mg/L	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.0010	< 0.0010
Dissolved Barium	mg/L	0.015	0.011	0.009	0.011	0.009	0.011	0.01	0.01	0.008	0.011	0.009	0.008	0.007	0.015	0.014	0.01	0.008	0.013	0.007	0.011	0.011	0.011	0.0077	0.013
Dissolved Boron	mg/L	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dissolved Cadmium	mg/L	< 0.005	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.00015	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.000090	< 0.000090
Dissolved Calcium	mg/L	34.8	22	19	26	14	12	21	13	23	15	22	9	8.2	47	23	20	24	37	14	26	37	30	27	46
Dissolved Chromium	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.0050	< 0.0050
Dissolved Copper	mg/L	< 0.005	0.005	0.003	0.003	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.001	0.001	0.001	0.003	0.002	0.002	0.002	0.002	0.002	0.004	0.01	0.0016	0.0017
Dissolved Iron	mg/L	0.2	2	1.2	1.4	2.8	4	1.3	3.7	0.4	3	2.1	3.5	3.6	0.7	0.5	3	0.4	0.9	2.6	2.4	0.2	2.4	0.16	0.35
Dissolved Lead	mg/L	< 0.001	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.00050	< 0.00050
Dissolved Magnesium	mg/L	4.5	4.4	4.1	5.3	3.3	2.7	4.4	3.1	4.4	3.2	4	1.9	1.6	8.4	4.1	3.7	4.3	6.5	2.7	4.7	7.2	5.6	4.7	7.7
Dissolved Manganese	mg/L	0.517	0.17	0.13	0.14	0.26	0.18	0.069	0.12	0.025	0.12	0.059	0.11	0.11	0.018	0.014	0.067	0.013	0.032	0.073	0.067	0.007	0.055	0.0055	0.014
Dissolved Potassium	mg/L	< 1	0.9	0.6	0.8	0.8	0.8	0.8	0.8	0.5	0.8	0.6	0.7	0.6	0.9	0.5	0.6	0.6	0.7	0.6	0.7	0.6	0.7	0.43	0.63
Dissolved Sodium	mg/L	1.8	0.8	0.7	0.8	0.7	0.7	0.8	0.9	0.8	0.7	0.8	0.7	0.6	1.2	0.8	0.9	1	1.2	1	1.2	1.1	1.3	0.71	1
Dissolved Zinc	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	0.007	< 0.005	< 0.005	0.014	< 0.005	0.008	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.0050	< 0.0050
Notes																									

1. "-" = data is not available

Source:

Table D.4 MW4 Analytical Data 2001-2023

	Sample I	D											N	IW4											
Parameter	Units	05 Jul 2001	16 Oct 2008	14 Jul 2009	20 Oct 2009	15 Jun 2010	14 Oct 2010	22 Jun 2011	27 Oct 2011	09 Jun 2016	26 Oct 2016	12 Jul 2017	05 Oct 2017	24 Jul 2018	3 12 Oct 2018	8 19 Jun 2019	10 Oct 2019	17 Jun 2020	24 Sep 2020	10 Jun 2021	27 Sep 2021	15 Jun 2022	08 Nov 2022	26 Apr 2023	14 Nov 2023
Conductivity Field	µS/cm	-	668	471	588	802	940	572	968	496	1360	924	1380	1263	1002	618	1157	1011	1231	1302	1643	1026	1330	606	1085
Dissolved Oxygen Field	mg/L	-	2.9	3.8	3.8	3.7	4.3	4.1	6.7	4.3	5.6	5.3	2.8	3.0	3.3	3.7	4.6	3.2	2.7	3.9	4.1	2.7	6.1	7.4	5.4
ORP Field	mV	-	-	-	-	-	-	-	-	104	201	82	78	87	117	-	88	-	66	-13	35	2	161	102	91
pH Field	s.u.	-	6.7	6.5	6.5	6.8	6.7	6.6	6.8	6.6	6.7	6.5	6.6	7.5	6.6	6.7	6.7	6.8	7.2	6.7	6.4	6.5	6.7	6.5	6.7
Temperature Field	°C	-	8.9	10	7.9	8.6	9	8.6	8.6	7.1	8.9	8.6	9.5	8.4	9.2	7.3	9.1	6.5	9.1	6.7	9.5	7.1	7.9	3.2	7.8
Total Alkalinity (as CaCO3)	mg/L	148	342	176	287	462	475	364	411	430	580	420	540	470	370	270	420	430	410	470	560	330	510	230	440
Total Ammonia (as N)	mg/L	< 0.03	< 0.05	< 0.05	< 0.05	0.05	< 0.05	-	0.07	0.16	0.13	0.07	0.08	0.08	0.19	0.06	0.06	0.08	0.13	0.32	0.52	0.29	0.46	0.66	0.45
Biological Oxygen Demand	mg/L	-	< 2	< 2	< 2	< 2	< 2	< 2	< 2	-	-	-	-	-	-	-	-	-	-	-	-	< 2	3	< 2	< 2
Chloride	mg/L	2.2	9	11	11	25	22	25	42	43	100	65	100	100	87	75	100	140	130	130	150	77	130	44	92
Dissolved Organic Carbon	mg/L	21	8.4	10	9	9.1	9.3	7.3	9.1	19	28	17	22	21	17	17	21	16	17	13	27	12	18	11	12
Hardness (as CaCO3)	mg/L	135	340	220	320	450	470	350	510	350	590	430	600	530	400	320	500	440	530	510	580	360	510	400	460
Nitrate (as N)	mg/L	1.8	1.5	9	0.7	2.4	0.4	4.2	0.2	1.1	< 0.1	0.2	< 0.1	< 0.1	< 0.1	2.1	0.3	0.6	0.5	0.8	< 0.1	1.4	< 0.1	0.59	0.56
Nitrate + Nitrite (as N)	mg/L	-	1.5	9	0.7	2.4	0.4	4.2	0.2	1.1	< 0.1	0.2	< 0.1	< 0.1	< 0.1	2.1	0.3	0.7	0.5	0.8	< 0.1	1.5	< 0.1	0.59	0.56
Nitrite (as N)	mg/L	< 0.2	< 0.01	0.03	< 0.01	< 0.01	< 0.01	0.01	< 0.01	0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	0.02	< 0.01	0.04	0.02	< 0.01	< 0.01	0.08	< 0.01	< 0.010	< 0.010
Organic Nitrogen (Calculated)	mg/L	-	0.88	1.68	0.58	0.78	0.58	-	0.43	0.84	1.17	0.83	1.02	1.12	0.61	0.64	1.14	1.02	0.87	0.58	1.28	0.61	0.94	0.54	0.75
Phosphorus	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.046	0.018	0.009	0.014
Sulphate	mg/L	13	23	23	19	24	24	22	36	16	57	54	93	80	75	36	65	75	86	48	86	30	41	23	42
Total Dissolved Solids	mg/L	186	460	305	395	550	608	447	551	480	922	624	915	850	625	605	715	510	810	645	935	550	585	600	715
Total Kjeldahl Nitrogen	mg/L	-	0.9	1.7	0.6	0.8	0.6	-	0.5	1	1.3	0.9	1.1	1.2	0.8	0.7	1.2	1.1	1	0.9	1.8	0.9	1.4	1.2	1.2
Arsenic	mg/L	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.001	< 0.001	0.001	0.002	< 0.001	0.001	0.002	0.001	0.002	0.001	0.003	0.002	0.002	0.0019	0.0014
Dissolved Barium	mg/L	0.027	0.07	0.055	0.056	0.061	0.061	0.048	0.051	0.066	0.078	0.072	0.089	0.099	0.074	0.065	0.097	0.088	0.1	0.12	0.16	0.097	0.12	0.099	0.11
Dissolved Boron	mg/L	0.05	0.13	0.1	0.14	0.16	0.18	0.13	0.18	0.24	0.29	0.25	0.46	0.32	0.32	0.3	0.37	0.38	0.4	0.31	0.71	0.28	0.39	0.21	0.29
Dissolved Cadmium	mg/L	< 0.005	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.0001	< 0.0001	< 0.0001	0.00029	0.00012	0.00026	0.00011	0.00018	< 0.0001	0.00011	< 0.00009	< 0.00009	0.0001	0.00014	< 0.00009	< 0.00009	< 0.000090	< 0.000090
Dissolved Calcium	mg/L	42.9	110	71	100	150	150	120	170	110	190	140	200	170	130	110	160	140	170	160	190	120	170	130	150
Dissolved Chromium	mg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.0050	< 0.0050
Dissolved Copper	mg/L	0.006	0.003	0.003	0.003	0.004	0.003	0.003	0.004	0.014	0.018	0.018	0.022	0.017	0.014	0.013	0.021	0.016	0.014	0.013	0.027	0.009	0.024	0.013	0.012
Dissolved Iron	mg/L	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1	0.2	0.7	< 0.1	0.6	0.8	0.7	1.2	1.3	3.9	1.7	1.8	2.7	0.36
Dissolved Lead	mg/L	< 0.001	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.00092	< 0.00050
Dissolved Magnesium	mg/L	6.7	15	10	15	21	23	15	23	17	27	21	25	24	19	15	23	20	24	24	25	17	22	18	21
Dissolved Manganese	mg/L	0.079	0.24	0.011	0.042	0.18	0.87	0.55	0.35	2	3.9	3.9	6.1	5.9	2.3	3	1.5	3.4	2	3.4	5.4	2.6	1.6	2.5	1.1
Dissolved Potassium	mg/L	3	8	7.5	7	7.6	8.5	6.4	9.6	4.5	9.1	5.1	8.1	6.2	7.1	3.7	7.3	4.2	6.8	5.8	7.5	6.4	8.8	7.5	11
Dissolved Sodium	mg/L	8.7	10	6.8	7.9	11	12	11	13	34	50	59	75	65	48	45	59	68	72	77	110	70	91	55	61
Dissolved Zinc	mg/L	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.0050	< 0.0050
Notes:																									

1. "-" = data is not available

Source:

